A new impetus for the use of PLS-SEM in business research

A Hungarian status report on the application of sem methodology, a glossary, and a breakdown of methodological barriers

Authors

DOI:

https://doi.org/10.14267/VEZTUD.2023.01.01

Keywords:

research network, SEM, structural equation modelling

Abstract

Structural equation modelling (SEM) is a popular multivariate analysis tool in marketing research that makes it possible to estimate both latent variables and their relationships. Variance-based (PLS) and covariance-based (CB) approaches are equal analysis methods based on recent methodological developments in PLS-SEM. The present study aims to eliminate the assumed methodological barriers of PLS-SEM and provide the domestic scientific community with a unified glossary and set of terms. The second part of the study examines SEM-related management articles published between 2016 and 2020. A distribution and thematic analysis revealed that the higher the prestige of the journal, the higher the SEM-publication ratio. Also, neither the chosen SEM methodology nor the analytics software were specified. Finally, a visualisation of research networks indicated that just a few scientific communities applied an SEM methodology in their research.

Downloads

Download data is not yet available.

Author Biographies

Ildikó Kemény, Corvinus University of Budapest

Associate Professor

Zsuzsanna Kun, Corvinus University of Budapest

PhD Candidate

Judit Simon, Corvinus University of Budapest

Professor Emerita

Nikoletta Kulhavi, Corvinus University of Budapest

master student

Jörg Henseler, University of Twente

professor

References

Babin, B. J., Hair, J. F., & Boles, J. S. (2008). Publishing Research in Marketing Journals Using Structural Equation Modeling. Journal of Marketing Theory and Practice, 16(4), 279–286. https://doi.org/10.2753/MTP1069-6679160401

Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003

Beran, R., & Srivastava, M. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix. The Annals of Statististics, 13(1), 95-115. https://doi.org/10.1214/aos/1176346579

Bollen, K. A. (1989). A New Incremental Fit Index for General Structural Equation Models. Sociological Methods & Research, 17(3), 303–316. https://doi.org/10.1177/0049124189017003004

Cole, D. A., Maxwell, S. E., Arvey, R., & Salas, E. (1993). Multivariate group comparisons of variable systems: MANOVA and structural equation modeling. Psychological Bulletin, 114(1), 174–184. https://doi.org/10.1037/0033-2909.114.1.174

Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203–1218. https://doi.org/10.1016/j.jbusres.2008.01.009

Dijkstra, T. K. (2017). A Perfect Match Between a Model and a Mode. In H. Latan & R. Noonan (Eds.), Partial Least Squares Path Modeling (pp. 55–80). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_4

Dijkstra, T. K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: Best fitting proper indices and other composites. Quality & Quantity, 45(6), 1505–1518. https://doi.org/10.1007/s11135-010-9359-z

Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008

Dijkstra, T. K., & Henseler, J. (2015b). Consistent Partial Least Squares Path Modeling. MIS Quarterly, 39(2), 297–316. https://doi.org/10.25300/MISQ/2015/39.2.02

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. Internet Research, 29(3), 430–447. https://doi.org/10.1108/IntR-12-2017-0515

Füstös, L. (2009). A sokváltozós adatelemzés módszerei. Budapest: MTA Szociológiai Kutatóintézete Társadalomtudományi Elemzések Akadémiai Műhelye (TEAM). Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10(4), 255–282. https://doi.org/10.1007/BF02288892

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi.org/10.1007/s11747-017-0517-x

Hair, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107–134. https://doi.org/10.1504/IJMDA.2017.087624

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. https://doi.org/10.1007/s11747-011-0261-6

Hancock, G. R., Lawrence, F. R., & Nevitt, J. (2000). Type I Error and Power of Latent Mean Methods and MANOVA in Factorially Invariant and Noninvariant Latent Variable Systems. Structural Equation Modeling: A Multidisciplinary Journal, 7(4), 534–556. https://doi.org/10.1207/S15328007SEM0704_2

Henseler, J. (2012). Why generalized structured component analysis is not universally preferable to structural equation modeling. Journal of the Academy of Marketing Science, 40(3), 402–413. https://doi.org/10.1007/s11747-011-0298-6

Henseler, J. , Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common Beliefs and Reality About PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928

Henseler, J. (2017). Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling. Journal of Advertising, 46(1), 178–192. https://doi.org/10.1080/00913367.2017.1281780

Henseler, J. (2018). Partial least squares path modeling: Quo vadis? Quality & Quantity, 52(1), 1–8. https://doi.org/10.1007/s11135-018-0689-6

Henseler, J. (2021). Composite-based structural equation modeling: Analyzing latent and emergent variables. London: The Guilford Press.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8

Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99. https://link.springer.com/content/pdf/10.1007/BF02295841.pdf

Iacobucci, D. (2009). Everything you always wanted to know about SEM (structural equations modeling) but were afraid to ask. Journal of Consumer Psychology, 19(4), 673–680. https://doi.org/10.1016/j.jcps.2009.09.002

Kazár K. (2014). A PLS-útelemzés és alkalmazása egy márkaközösség pszichológiai érzetének vizsgálatára. Statisztikai Szemle, 92(1), 35–52. https://www.ksh. hu/statszemle_archive/2014/2014_01/2014_01_033.pdf

Kemény I., Kulhavi N., & Kun Zs. (2022). A távorvoslás igénybevételét befolyásoló tényezők a COVID-19 járvány miatti félelem tükrében. Statisztikai Szemle, 100(1), 7-43. https://doi.org/10.20311/stat2022.1.hu0007

Nagy Á., Kemény I., Szűcs K., Simon J., & Kehl D. (2019). A véleményformáló magatartás mint másodrendű látens változó modellezése PLS-alapú strukturális egyenletek módszerével. Statisztikai Szemle, 97(9), 827–854. https://doi.org/10.20311/stat2019.9.hu0827

Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariancebased and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344. https://doi.org/10.1016/j.ijresmar.2009.08.001

Rigdon, E. E. (2012). Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods. Long Range Planning, 45(5–6), 341–358. https://doi.org/10.1016/j.lrp.2012.09.010

Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations. Marketing ZFP, 39(3), 4–16. https://doi.org/10.15358/0344-1369-2017-3-4

Ringle, Sarstedt, & Straub. (2012). Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly.” MIS Quarterly, 36(1), iii-xiv. https://doi.org/10.2307/41410402

Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998–4010. https://doi.org/10.1016/j.jbusres.2016.06.007

Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the Emancipation of PLS-SEM: A Commentary on Rigdon (2012). Long Range Planning, 47(3), 154–160. https://doi.org/10.1016/j.lrp.2014.02.007

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory Composite Analysis. Frontiers in Psychology, 9, 2541. https://doi.org/10.3389/fpsyg.2018.02541

Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564. https://doi.org/10.1016/j.jbusres.2016.03.049

Sijtsma, K. (2009). On the Use, the Misuse, and the Very Limited Usefulness of Cronbach’s Alpha. Psychometrika, 74(1), 107–120. https://doi.org/10.1007/s11336-008-9101-0

Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119–134. https://doi.org/10.1007/s11747-015-0455-4

Downloads

Published

2023-01-16

How to Cite

Kemény, I., Kun, Z., Simon, J., Kulhavi, N., & Henseler, J. (2023). A new impetus for the use of PLS-SEM in business research : A Hungarian status report on the application of sem methodology, a glossary, and a breakdown of methodological barriers. Vezetéstudomány Budapest Management Review, 54(1), 2–13. https://doi.org/10.14267/VEZTUD.2023.01.01

Issue

Section

Studies and Articles