Technológiaelfogadás a felsőoktatásban

Az interakcióigény és az önszabályozás hatása az online tanulási szándékra

Szerzők

DOI:

https://doi.org/10.14267/VEZTUD.2022.07.02

Kulcsszavak:

technológiaelfogadás, online oktatás, UTAUT-2, személyes jellemzők

Absztrakt

2020 tavaszán a COVID-19 vírus miatt kialakult járványhelyzet világszerte távoktatásra kényszerítette a felsőoktatásban dolgozókat és tanulókat, amely teljesen új tanítási és tanulási stratégiákat követelt a felsőoktatásban részt vevő egyénektől. A kutatás célja, hogy feltárja az oktatással kapcsolatos, online oktatás elfogadását befolyásoló személyes tulajdonságokat, tényezőket, mint a személyes interakció iránti igény vagy az önszabályozó tanulásra való képesség. Az UTAUT2 technológiaelfogadási modell változóit közvetítő hatásként bevonva vizsgálták a szerzők az online tanulás, mint technológia jövőbeni elfogadására való hajlandóságot. Kvantitatív kutatásukban 307 felsőoktatásban tanuló hallgatótól online kérdőív segítségével gyűjtött adatokat használtak fel hipotéziseik teszteléséhez. A strukturális egyenletek modellezéssel (SEM) való hipotézistesztelés után a várható teljesítmény és a hedonista motiváció változók direkt, míg az önszabályozó tanulás, valamint a személyes interakció igény változók indirekt módon hatottak az online tanulási szándékra. A várható szükséges erőfeszítés változó nem szignifikáns hatást gyakorol a végső, endogén változóra. A modellbe bevont öt konstrukció 66,4%-os varianciával magyarázza az online tanuláshoz vezető használati szándékot.

Letöltések

Letölthető adat még nem áll rendelkezésre.

Szerző életrajzok

Ágnes Halász, Budapesti Corvinus Egyetem

PhD-hallgató

Zsófia Kenesei, Budapesti Corvinus Egyetem

Egyetemi tanár

Hivatkozások

Abdul Rabu, S. N., Hussin, H., & Bervell, B. (2019). Qr code utilization in a large classroom: Higher education students’ initial perceptions. Education and Information Technologies, 24(1), 359–384. https://doi.org/10.1007/s10639-018-9779-2

Abdullah, F., & Ward, R. (2016). Developing a general extended technology acceptance model for e-learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. https://doi.org/10.1016/j.chb.2015.11.036

Al-Adwan, A. S., Al-Madadha, A., & Zvirzdinaite, Z. (2018). Modeling Students’ Readiness to Adopt Mobile Learning in Higher Education: An Empirical Study. The International Review of Research in Open and Distributed Learning, 19(1), 221-241. https://doi.org/10.19173/irrodl.v19i1.3256

Al-Adwan, A. S. (2020). Investigating the drivers and barriers to MOOCs adoption: The perspective of TAM. Education and Information Technologies, 25(6), 5771-5795. https://doi.org/10.1007/s10639-020-10250-z

Alalwan, N., Al-Rahmi, W. M., Alfarraj, O., Alzahrani, A., Yahaya, N., & Al-Rahmi, A. M. (2019). Integrated Three Theories to Develop a Model of Factors Affecting Students’ Academic Performance in Higher Education. IEEE Access, 7, 98725-98742. https://doi.org/10.1109/access.2019.2928142

Alamri, M. M., Almaiah, M. A., & Al-Rahmi, W. M. (2020). The Role of Compatibility and Task-Technology Fit (TTF): On Social Networking Applications (SNAs) Usage as Sustainability in Higher Education. IEEE Access, 8, 161668-161681. https://doi.org/10.1109/access.2020.3021944

Albelbisi, N. A. (2019). The role of quality factors in supporting self-regulated learning (SRL) skills in MOOC environment. Education and Information Technologies, 24(2), 1681-1698. https://doi.org/10.1007/s10639-018-09855-2

Alenazy, W. M., Mugahed Al-Rahmi, W., & Khan, M. S. (2019). Validation of tam model on social media use for collaborative learning to enhance collaborative authoring. IEEE Access, 7, 71550–71562. https://doi.org/10.1109/ACCESS.2019.2920242

Al-Rahmi, W. M., Alias, N., Othman, M. S., Marin, V. I., & Tur, G. (2018). A model of factors affecting learning performance through the use of social media in Malaysian higher education. Computers & Education, 121, 59-72. https://doi.org/10.1016/j.compedu.2018.02.010

Altalhi, M. (2020). Toward a model for acceptance of MOOCs in higher education: The modified UTAUT model for Saudi Arabia. Education and Information Technologies, 26, 1589–1605. https://doi.org/10.1007/s10639-020-10317-x

Atif, A., Richards, D., Busch, P., & Bilgin, A. (2015). Assuring graduate competency: A technology acceptance model for course guide tools. Journal of Computing in Higher Education, 27(2), 94-113. https://doi.org/10.1007/s12528-015-9095-4

Barajas, M. (2002). Restructuring Higher Education institutions in Europe: The case of virtual learning environments. Interactive Educational Multimedia, 5(October), 1-28.

Basak, S. K., Wotto, M., & Bélanger, P. (2018). E-learning, m-learning and d-learning: Conceptual definition and comparative analysis. E-Learning and Digital Media, 15(4), 191–216. https://doi.org/10.1177/2042753018785180

Bawack, R., & Kala Kamdjoug, J. R. (2017). Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. International Journal of Medical Informatics, 109, 15-22. https://doi.org/10.1016/j.ijmedinf.2017.10.016

Botero, G. G., Questier, F., Cincinnato, S., He, T., & Zhu, C. (2018). Acceptance and usage of mobile assisted language learning by higher education students. Journal of Computing in Higher Education, 30(3), 426-451. https://doi.org/10.1007/s12528-018-9177-1

Byrne, B.M. (2016). Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming (3rd ed.). London: Routledge. https://doi.org/10.4324/9781315757421

Chavoshi, A., & Hamidi, H. (2019). Social, individual, technological and pedagogical factors influencing mobile learning acceptance in higher education: A case from Iran. Telematics and Informatics, 38, 133-165. https://doi.org/10.1016/j.tele.2018.09.007

Collier, J. E., & Kimes, S. E. (2012). Only if it is convenient: Understanding How Convenience Influences Self-Service: Technology Evaluation. Journal of Service Research, 16(1), 39-51. https://doi.org/10.1177/1094670512458454

Cosnefroy, L., & Carré, P. (2017). Self-regulated and Self-directed Learning: Why Don’t Some Neighbors Communicate? International Journal of Self-Directed Learning, 11(2), 1-12.

Curran, J. M., & Meuter, M. L. (2005). Self‐service technology adoption: Comparing Three technologies. Journal of Services Marketing, 19(2), 103-113. https://doi.org/10.1108/08876040510591411

Dabholkar, P. A. (1996). Consumer Evaluations of new technology-based self-service options: An investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29-51. https://doi.org/10.1016/0167-8116(95)00027-5

Dabholkar, P. A. & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30(3), 184- 201. https://doi.org/10.1177/0092070302303001

Dailey-Hebert, A. (2018). Maximizing interactivity in on- line learning: Moving beyond discussion boards. Journal of Educators Online, 15(3), 1199230. https://doi.org/10.9743/jeo.2018.15.3.8

Davis, F. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems (PhD Thesis). Massachusetts Institute of Technology, Sloan School of Management, Cambridge (MA).

Dečman, M. (2015). Modeling the acceptance of e-learning in mandatory environments of higher education: The influence of previous education and gender. Computers in Human Behavior, 49, 272–281. https://doi.org/10.1016/j.chb.2015.03.022

Demoulin, N. T., & Djelassi, S. (2016). An integrated model of self-service technology (SST) usage in a retail context. International Journal of Retail & Distribution Management, 44(5), 540-559. https://doi.org/10.1108/ijrdm-08-2015-0122

Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note - how does personality matter? relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93-105. https://doi.org/10.1287/isre.1070.0153

Doleck, T., Bazelais, P., & Lemay, D. J. (2017). The role of behavioral expectation in technology acceptance: A CEGEP case study. Journal of Computing in Higher Education, 30(3), 407-425. https://doi.org/10.1007/s12528-017-9158-9

Eitel, A., Endres, T., & Renkl, A. (2020). Self-management as a Bridge Between Cognitive Load and Self-regulated Learning: The Illustrative Case of Seductive Details. Educational Psychology Review, 32(4), 1073- 1087. https://doi.org/10.1007/s10648-020-09559-5

Eom, S. B. (2012). Effects of LMS, self‐efficacy, and self‐regulated learning on LMS effectiveness in business education. Journal of International Education in Business, 5(2), 129-144. https://doi.org/10.1108/18363261211281744

Estriegana, R., Medina-Merodio, J., & Barchino, R. (2019). Student acceptance of Virtual Laboratory and practical work: An extension of the Technology Acceptance Model. Computers & Education, 135, 1-14. https://doi.org/10.1016/j.compedu.2019.02.010

Gaskin, J. & Lim, J. (2016). Model fit measures.

Herting, D. C., Pros, R. C., & Tarrida, A. C. (2020). Habit and social influence as determinants of PowerPoint use in higher education: A study from a technology acceptance approach. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2020.1799021

Hoi, V. N. (2020). Understanding higher education learners acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Computers & Education, 146, 103761. https://doi.org/10.1016/j.compedu.2019.103761

Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424 – 453. https://doi.org/10.1037/1082-989X.3.4.424

Ikhsan, R. B., & Prabowo, H. (2021). Drivers of the mobile-learning management system’s actual usage: Applying the utaut model. ICIC Express Letters. Part B, Applications: An International Journal of Research and Surveys, 12(11), 1067-1074.

Jain, N. K., Bhaskar, K., & Jain, S. (2021). What drives adoption intention of electric vehicles in India? An integrated UTAUT model with environmental concerns, perceived risk and government support. Research in Transportation Business & Management, 42, 100730. https://doi.org/10.1016/j.rtbm.2021.100730

Kaushik, M. K., & Verma, D. (2019). Determinants of digital learning acceptance behavior A systematic review of applied theories and implications for higher education. Journal of Applied Research in Higher Education, 12(4), 659-672. https://doi.org/10.1108/JARHE-06-2018-0105

Kazainé Ónodi, A. (2022). Online vagy hagyományos tantermi oktatás? Educatio, 30(3), 508-514. https://doi.org/10.1556/2063.30.2021.3.10

Kemp, N., & Grieve, R. (2014). Face-to-face or face-to- screen? Undergraduates’ opinions and test performance in classroom vs. online learning. Frontiers in Psychology, 5, 1278. https://doi.org/10.3389/fpsyg.2014.01278

Kemény, I., Simon, J., Berezvai, Z., & Kun, Z. (2021). Marketingkutatás kvantitatív módszerei. Segédanyag SPSS program használatához. Budapest: Budapesti Corvinus Egyetem Marketing Intézet.

Kenesei, Z. (2020). A technológia használatának segítő tényezői idős korban. Vezetéstudomány, 51(10), 15-28. https://doi.org/10.14267/VEZTUD.2020.10.02

Kenesei, Zs., & Cserdi, Zs. (2018) A kényszerített önkiszolgálás elfogadásának előzményei és következményei a BKK-automaták példáján keresztül. Vezetéstudomány, 49(12), 4-10. https://doi.org/10.14267/VEZTUD.2018.12.01

Keszey, T. (2018). Bizalom és vezetői információfelhasználás: a hatalom moderáló hatása. Statisztikai Szemle, 96(2), 164–181.

Keszey, T. (2020). Behavioural intention to use autonomous vehicles: Systematic review and empirical extension. Transportation Research Part C: Emerging Technologies, 119, 102732. https://doi.org/10.1016/j.trc.2020.102732

Keszey, T., & Zsukk, J. (2017). Az új technológiák fogyasztói elfogadása: A magyar és nemzetközi szakirodalom áttekintése és kritikai értékelése. Vezetéstudomány, 48(10), 38–47. https://doi.org/10.14267/VEZTUD.2017.10.05

Kuong, H. C. (2015). Enhancing online learning experience: From learners’ perspective. Procedia - Social and Behavioral Sciences, 191, 1002–1005. https://doi.org/10.1016/j.sbspro.2015.04.403

Lazar, I. M., Panisoara, G., & Panisoara, I. O. (2020). Digital technology adoption scale in the blended learning context in higher education: Development, validation and testing of a specific tool. Plos One, 15(7). https://doi.org/10.1371/journal.pone.0235957

Lakhal, S., Khechine, H., & Pascot, D. (2013). Student behavioural intentions to use desktop video conferencing in a distance course: Integration of autonomy to the UTAUT model. Journal of Computing in Higher Education, 25, 93–121.

Lee, J., Kim, J., & Choi, J. Y. (2019). The adoption of virtual reality devices: The technology acceptance model integrating enjoyment, social interaction, and strength of the social ties. Telematics and Informatics, 39, 37-48. https://doi.org/10.1016/j.tele.2018.12.006

Lin, Y., McKeachie, W. J., & Kim, Y. C. (2003). College student intrinsic and/or extrinsic motivation and learning. Learning and Individual Differences, 13(3), 251-258. https://doi.org/10.1016/s1041-6080(02)00092-4

Loyens, S. M., Magda, J., & Rikers, R. M. (2008). Self-Directed Learning in Problem-Based Learning and its Relationships with Self-Regulated Learning. Educational Psychology Review, 20(4), 411-427. https://doi.org/10.1007/s10648-008-9082-7

Maier, C. (2012). Personality within information systems research: A literature analysis. ECIS 2012 Proceedings, 101.

Molnár, É. (2002). Önszabályozó tanulás: Nemzetközi kutatási irányzatok és tendenciák. Magyar Pedagógia, 102(1), 63-79.

Moran, M., Hawkes, M., & Gayar, O. E. (2010). Tablet Personal Computer Integration in higher education: Applying the unified theory of acceptance and use technology model to understand supporting factors. Journal of Educational Computing Research, 42(1), 79-101. https://doi.org/10.2190/ec.42.1.d

Murray, G. (2014). The social dimensions of learner autonomy and self-regulated learning. Studies in Self-Access Learning Journal, 5(4), 320–341.

Ngampornchai, A., & Adams, J. (2016). Students’ acceptance and readiness for E-learning in Northeastern Thailand. International Journal of Educational Technology in Higher Education, 13(1). https://doi.org/10.1186/s41239-016-0034-x

Nistor, N., Stanciu, D., Lerche, T., & Kiel, E. (2019). “I am fine with any technology, as long as it doesn’t make trouble, so that I can concentrate on my study”: A case study of university students’ attitude strength related to educational technology acceptance. British Journal of Educational Technology, 50(5), 2557-2571. https://doi.org/10.1111/bjet.12832

Nunnally, J. C. (1967). Psychometric Theory. New York: McGraw-Hill.

Ongena, G., Staat, S., & Ravesteijn, P. (2020). Factors Affecting the Adoption of Self-Service Technology (SST) in the Public Sector. International Journal of Public Administration in the Digital Age, 7(3), 32-46. https://doi.org/10.4018/ijpada.2020070102

Otter, R. R., Seipel, S., Graeff, T., Alexander, B., Boraiko, C., Gray, J., Petersen, K., & Sadler, K. (2013). Comparing student and faculty perceptions of online and traditional courses. The Internet and Higher Education, 19, 27–35. https://doi.org/10.1016/j.iheduc.2013.08.001

Proháczik, Á. (2020). A tantermi és online oktatás összehasonlító elemzése. Opus et Educatio, 7(3), 208-219. https://doi.org/10.3311/ope.390

Rabu, S. N., Hussin, H., & Bervell, B. (2018). QR code utilization in a large classroom: Higher education students’ initial perceptions. Education and Information Technologies, 24(1), 359-384. https://doi.org/10.1007/s10639-018-9779-2

Raman, P. (2020). Examining the importance of gamification, social interaction and perceived enjoyment among young female online buyers in India. Young Consumers, 22(3), 387-412. https://doi.org/10.1108/yc-05-2020-1148

Raza, S. A., Qazi, W., Khan, K. A., & Salam, J. (2020). Social Isolation and Acceptance of the Learning Management System (LMS) in the time of COVID-19 Pandemic: An Expansion of the UTAUT Model. Journal of Educational Computing Research, 59(2), 183-208. https://doi.org/10.1177/0735633120960421

Rose, J. & Fogarty, G. (2006). Determinants of perceived usefulness and perceived ease of use in the technology acceptance model: senior consumers’ adoption of self-service banking technologies. Academy of World Business, Marketing & Management Development Conference Proceedings, 2(10), 122-129.

Salloum, S. A., Alhamad, A. Q., Al-Emran, M., Monem, A. A., & Shaalan, K. (2019). Exploring Students’ Acceptance of E-Learning Through the Development of a Comprehensive Technology Acceptance Model. IEEE Access, 7, 128445-128462. https://doi.org/10.1109/access.2019.2939467

Saks, K., & Leijen, Ä. (2014). Distinguishing Self-directed and Self-regulated Learning and Measuring them in the E-learning Context. Procedia - Social and Behavioral Sciences, 112, 190-198. https://doi.org/10.1016/j.sbspro.2014.01.1155

Sharif, A., & Raza, S. A. (2017). The influence of hedonic motivation, self-efficacy, trust and habit on adoption of internet banking: A case of developing country. International Journal of Electronic Customer Relationship Management, 11(1), 1-22. https://doi.org/10.1504/ijecrm.2017.086750

Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92, 578-588. https://doi.org/10.1016/j.chb.2018.07.002

Sidik, D., & Syafar, F. (2020). Exploring the factors influencing student’s intention to use mobile learning in Indonesia higher education. Education and Information Technologies, 25(6), 4781-4796. https://doi.org/10.1007/s10639-019-10018-0

Sindermann, C., Riedl, R., & Montag, C. (2020). Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study. Future Internet, 12(7), 110. https://doi.org/10.3390/fi12070110

Sukendro, S., Habibi, A., Khaeruddin, K., Indrayana, B., Syahruddin, S., Makadada, F. A., & Hakim, H. (2020). Using an extended technology acceptance model to understand students’ use of e-learning during covid-19: Indonesian sport science education context. Heliyon, 6(11), e05410. https://doi.org/10.1016/j.heliyon.2020.e05410

Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in Human Behavior, 27(6), 2067–2077. https://doi.org/10.1016/j.chb.2011.08.005

Sun, P. C., Tsai, R. J., Finger, G., Chen, Y.Y., & Yeh, D. (2008). What drives a successful e-learning?: An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183–1202. https://doi.org/10.1016/j.compedu.2006.11.007

Tamilmani, K., Rana, N. P., Prakasam, N., & Dwivedi, Y. K. (2019). The battle of Brain vs. Heart: A literature review and meta-analysis of “hedonic motivation” use in UTAUT2. International Journal of Information Management, 46, 222-235. https://doi.org/10.1016/j.ijinfomgt.2019.01.008

Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302-312. https://doi.org/10.1016/j.compedu.2008.08.006

Tu, C.H. & McIsaac, M. (2002). The relationship of social presence and interaction in online classes. American Journal of Distance Education, 16(3), 131–150. https://doi.org/10.1207/S15389286AJDE1603_2

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Walker, R. H., & Francis, H. (2003). Customer service and relationship management in the context of technology-enabled service delivery systems. Australasian Marketing Journal, 11(2), 23-33. https://doi.org/10.1016/S1441-3582(03)70126-8

Yadegaridehkordi, E., Shuib, L., Nilashi, M., & Asadi, S. (2019). Decision to adopt online collaborative learning tools in higher education: A case of top Malaysian universities. Education and Information Technologies, 24(1), 79–102. https://doi.org/10.1007/s10639-018-9761-z

Yakubu, M. N., & Dasuki, S. I. (2018). Factors affecting the adoption of e-learning technologies among higher education students in Nigeria. Information Development, 35(3), 492-502. https://doi.org/10.1177/0266666918765907

Yang, H. H., Feng, L., & MacLeod, J. (2019). Understanding college students’ acceptance of cloud classrooms in flipped instruction: Integrating UTAUT and connected classroom climate. Journal of Educational Computing Research, 56(8), 1258–1276. https://doi.org/10.1177/0735633117746084

Young, M. R. (2005). The motivational effects of the classroom environment in facilitating self-regulated learning. Journal of Marketing Education, 27(1), 25- 40. https://doi.org/10.1177/0273475304273346

Zhu, Y., Zhang, J. H., Au, W., & Yates, G. (2020). University students’ online learning attitudes and continuous intention to undertake online courses: A self-regulated learning perspective. Educational Technology Research and Development, 68(3), 1485-1519. https://doi.org/10.1007/s11423-020-09753-w

Downloads

Megjelent

2022-07-27

Hogyan kell idézni

Halász, Ágnes, & Kenesei, Z. (2022). Technológiaelfogadás a felsőoktatásban: Az interakcióigény és az önszabályozás hatása az online tanulási szándékra. Vezetéstudomány Budapest Management Review, 53(7), 4–18. https://doi.org/10.14267/VEZTUD.2022.07.02

Folyóirat szám

Rovat

Tanulmányok