Az ismeretlen ismerős
A neuromarketing iránti attitűdök szentimentelemzése
DOI:
https://doi.org/10.14267/VEZTUD.2021.06.04Keywords:
neuromarketing, social listening, sentiment analysisAbstract
By the middle of the 2010s, neuromarketing had become a full-fledged academic discipline as well as a relevant practical market research activity. It is now used worldwide for primarily product development purposes and to gain deeper insight into consumer motivation and decision-making methods. Still, there is a gap in the literature regarding consumer attitudes towards neuromarketing as a phenomenon; ethical issues and professional errors in the initial phases of its existence as a field of study have greatly hindered the development of its reputation, which explains the public’s generally negative stance towards the area. The present study is aimed at filling the aforementioned gap: using the SentiOne social listening software, the authors gathered all mentions of the term “neuromarketing” within the Hungarian-language social media space published during the years 2017–2018 and conducted a content analysis. Their results reveal a general state of mind about the area of neuromarketing. Publicly available online manifestations in the topic are categorized thereby outlining a more sophisticated picture of consumer attitudes towards neuromarketing. By examining how these relate to the actual state of the field as detailed in their theoretical review, their results attempt to shed light on the additional educational tasks of practitioners beyond scientific discourse and practical applications to increase the field’s general acceptance.
Downloads
References
Ajzen, I. (2008). Consumer attitudes and behavior. In C. P. Haugtvedt, P. M. Herr, & F. R. Cardes (Eds.), Handbook of Consumer Psychology (pp. 525-548). New York: Lawrence Erlbaum Associates.
Anderson, E. W. (1998). Customer Satisfaction and Word of Mouth. Journal of Service Research, 1(1), 5–17. https://doi.org/10.1177/109467059800100102
Anstead, N., & O’Loughlin, B. (2014). Social Media Analysis and Public Opinion: The 2010 UK General Election. Journal of Computer-Mediated Communication, 20(2), 204–220. https://doi.org/10.1111/jcc4.12102
Argamon S., Bloom K., Esuli A., & Sebastiani F. (2009). Automatically Determining Attitude Type and Force for Sentiment Analysis. In Z. Vetulani, H. Uszkoreit (Eds.), Human Language Technology. Challenges of the Information Society. LTC 2007. Lecture Notes in Computer Science, vol 5603 (pp. 218-231). Berlin : Springer. https://doi.org/10.1007/978-3-642-04235-5_19
Arndt, J. (1967). Role of Product-related Conversations in the Diffusion of a New Product. Journal of Marketing Research, 4(3), 291-295. https://doi.org/10.1177/002224376700400308
Bakardjieva, E., & Kimmel, A. J. (2016). Neuromarketing Research Practices: Attitudes, Ethics, and Behavioral Intentions. Ethics & Behavior, 27(3), 179–200. https://doi.org/10.1080/10508422.2016.1162719
Baraybar-Fernández, A., Baños-González, M., Barquero-Pérez, Ó, Goya-Esteban, R., & de-la-Morena-Gómez, A. (2017). Evaluación de las respuestas emocionales a la publicidad televisiva desde el Neuromarketing. Comunicar, 25, 19–28. https://doi.org/10.3916/c52-2017-02
Barrett, L. F. (2017). How emotions are made. Boston, MA: Houghton Mifflin Harcourt.
Boyd, D. M., & Ellison, M. B. (2008). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230. https://doi.org/10.1111/j.1083-6101.2007.00393.x
Brammer, M. (2004). Brain scam? Nature Neuroscience, 7(10), 1015. https://doi.org/10.1038/nn1004-1015
Brunel, F. F., Tietje, B. C., & Greenwald, A. G. (2004). Is the implicit association test a valid and valuable measure of implicit consumer social cognition?. Journal of Consumer Psychology, 14(4), 385-404. https://doi.org/10.1207/s15327663jcp1404_8
Camerer, C. (2003). Strategizing in the brain. Science, 300, 1673–1675. https://doi.org/10.1126/science.1086215
Coulter, K. S., & Punj, G. N. (2004). The effects of cognitive resource requirements, availability, and argument quality on brand attitudes: A melding of elaboration likelihood and cognitive resource matching theories. Journal of Advertising, 33(4), 53–64. https://doi.org/10.1080/00913367.2004.10639177
Crawford, J. R., & Henry, J. D. (2004). The Positive and Negative Affect Schedule (PANAS): Construct validity,measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43(3), 245-265. https://doi.org/10.1348/0144665031752934
Cvijikj, I. P., & Michahelles, F. (2013). Online engagement factors on Facebook brand pages. Social Network Analysis and Mining, 3, 843–861. https://doi.org/10.1007/s13278-013-0098-8
De Choudhury, M., Sundaram, H., John, A., & Seligmann, D. D. (2009). Social Synchrony: Predicting Mimicry of User Actions in Online Social Media. In Proceedings of the 2009 IEEE International Conference on Social Computing (pp. 151-158). Vancouver, Canada, August 29–31. https://doi.org/10.1109/cse.2009.439
Dellarocas, C. (2003). The Digitization of Word of Mouth:
Promise and Challenges of Online Feedback Mechanisms. Management Science, 49(10), 1407–1424. https://doi.org/10.1287/mnsc.49.10.1407.17308
Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005). Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15(2), 171-182. https://doi.org/10.1111/j.1552-6569.2005.tb00303.x
Erk, S., Spitzer, M., Wunderlich, A. P., Galley, L., & Walter, H. (2002). Cultural objects modulate reward circuitry. NeuroReport, 13(18), 2499-2503. https://doi.org/10.1097/00001756-200212200-00024
Esch, F. R., Moll, T., Schmitt, B., Elger, C. E., Neuhaus, C., & Weber, B. (2012). Brands on the brain: Do consumers use declarative information or experienced emotions to evaluate brands?. Journal of Consumer Psychology, 22(1), 75-85. https://doi.org/10.1016/j.jcps.2010.08.004
Fisher, C. E., Chin, L., & Klitzman, R. (2010). Defining Neuromarketing: Practices and Professional Challenges. Harvard Review of Psychiatry, 18(4), 230–237. https://doi.org/10.3109/10673229.2010.496623
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of brain and decision. Science, 306(5695), 447–452. https://doi.org/10.1126/science.1102566
Green, J., & Jenkins, H. (2011). Spreadable media: How audiences create value and meaning in a networked economy. In Virginia Nightingale (Ed.), The handbook of media audiences (pp. 109-127). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781444340525.ch5
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., & Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science, 11(6), 838-854. https://doi.org/10.1177/1745691616650285
Hofmeister-Tóth, Á. (2014). A fogyasztói magatartás alapjai. Budapest: Akadémiai Kiadó.
Hutto, C. J., & Gilbert, E. (2015). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. In E. Adar & P. Resnick (Eds.), Proceedings of the eighth international AAAI conference on weblogs and social media (pp. 216-225). Palo Alto, CA: AAAI Press.
Jang, H. J., Sim, J., Lee, Y., & Kwon, O. (2013). Deep sentiment analysis: Mining the causality between personality-value-attitude for analyzing business ads in social media. Expert Systems with Applications, 40(18), 7492-7503. https://doi.org/10.1016/j.eswa.2013.06.069
Karmarkar, U. R., & Plassmann, H. (2019). Consumer Neuroscience: Past, Present, and Future. Organizational Research Methods, 22(1), 174–195. https://doi.org/10.1177/1094428117730598
Kenning, P., & Plassmann, H. (2005). NeuroEconomics: An overview from an economic perspective. Brain Research Bulletin, 67(5), 343–354. https://doi.org/10.1016/j.brainresbull.2005.07.006
Keszey, T. & Zsukk, J. (2017). Az új technológiák fogyasztói elfogadása. A magyar és nemzetközi szakirodalom áttekintése és kritikai értékelése. Vezetéstudomány, 48(10), 38-47. https://doi.org/10.14267/VEZTUD.2017.10.05
Kim, M. K., & Ketenci, T. (2020). The role of expressed emotions in online discussions, Journal of Research on Technology in Education, 52(1), 95-112. https://doi.org/10.1080/15391523.2019.1697861
Klostermann, J., Plumeyer, A., Böger, D., & Decker, R. (2018). Extracting brand information from social networks: Integrating image, text, and social tagging data. International Journal of Research in Marketing, 35(4), 538-556. https://doi.org/10.1016/j.ijresmar.2018.08.002
Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural Predictors of Purchases. Neuron, 53(1), 147-156. https://doi.org/10.1016/j.neuron.2006.11.010
Kucuktunc, O., Cambazoglu, B. B., Weber, I., & Ferhatosmanoglu, H. (2012). A large-scale sentiment analysis for Yahoo! answers. Proceedings of the fifth ACM international conference on Web search and data mining - WSDM ‚12 (pp. 633-642). ACM. https://doi.org/10.1145/2124295.2124371
Laroche, M., Habibi, M. R., & Richard, M.-O. (2013). To be or not to be in social media: How brand loyalty is affected by social media? International Journal of Information Management, 33(1), 76–82. https://doi.org/10.1016/j.ijinfomgt.2012.07.003
Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is “neuromarketing”? A discussion and agenda for future research. International Journal of Psychophysiology, 63(2) 199-204. https://doi.org/10.1016/j.ijpsycho.2006.03.007
Lee, T. Y., & Bradlow, E. T. (2011). Automated marketing research using online customer reviews. Journal of Marketing Research, 48(5), 881–894. https://doi.org/10.1509/jmkr.48.5.881
Lee, N., Chamberlain, L., & Brandes, L. (2018). Welcome to the jungle! The neuromarketing literature through the eyes of a newcomer. European Journal of Marketing, 52(1/2), 4–38. https://doi.org/10.1108/ejm-02-2017-0122
Liu, X., Burns, A. C., & Hou, Y. (2017). An investigation of brand-related user-generated content on twitter. Journal of Advertising, 46(2), 236–247. https://doi.org/10.1080/00913367.2017.1297273
Markos-Kujbus, É. (2016). Az on-line szájreklám jellemzői a marketingkommunikáció szempontjából. Vezetéstudomány, 47(6), 52-63. http://unipub.lib.uni-corvinus.hu/2412/1/VT_2016n6p52.pdf
McAlexander, J. H., Schouten, W. J., & Koening, F. H. (2002). Building brand community. Journal of Marketing, 66(1), 38–54. https://doi.org/10.1509/jmkg.66.1.38.18451
McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379-387. https://doi.org/10.1016/j.neuron.2004.09.019
Mitchell, A., & Page, D. (2013). The role of news on Facebook. Common yet incidental. Pew Research Center. https://www.journalism.org/2013/10/24/the-role-of-news-on-facebook/
Murphy, E. R., Illes, J., & Reiner, P. B. (2008). Neuroethics of neuromarketing. Journal of Consumer Behaviour, 7(4-5), 293–302. https://doi.org/10.1002/cb.252
Neulinger, Á. (2016). Több-módszertanú és vegyes módszertanú kutatások. Vezetéstudomány, 47(4), 63-66. https://doi.org/10.14267/veztud.2016.04.11
Novak, P. K., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of emojis. PLoS One, 10(12), e0144296. https://doi.org/10.1371/journal.pone.0144296
Ohme, R., Wiener, D., Reykowska, D., & Choromanska, A. (2009). Analysis of Neurophysiological Reactions to Advertising Stimuli by Means of EEG and Galvanic Skin Response Measures. Journal of Neuroscience, Psychology, & Economics, 2(1), 21–31. https://doi.org/10.1037/a0015462
Plassmann, H., Ambler, T., Braeutigam, S., & Kenning, P. (2007). What can advertisers learn from neuroscience? International Journal of Advertising, 26(2), 151-175. https://doi.org/10.1080/10803548.2007.11073005
Plassmann, H., Venkatraman, V., Huettel, S., & Yoon, C. (2015). Consumer neuroscience: Applications, challenges, and possible solutions. Journal of Marketing Research, 52(4), 427-435. https://doi.org/10.1509/jmr.14.0048
Pradeep, A. K. (2010). The Buying Brain: Secrets for Selling to the Subconscious Mind. New York, NY: Wiley.
Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in Human Behavior, 29(4), 1841-1848. https://doi.org/10.1016/j.chb.2013.02.014
Ramsøy, T. Z. (2014). Introduction to neuromarketing & consumer neuroscience. Rørvig: Neurons Inc.
Reimann, M., Zaichkowsky, J., Neuhaus, C., Bender, T., & Weber, B. (2010). Aesthetic package design: A behavioral, neural, and psychological investigation. Journal of Consumer Psychology, 20(4), 431-441. https://doi.org/10.1016/j.jcps.2010.06.009
Riedl, R., Hubert, M., & Kenning, P. (2010). Are There Neural Gender Differences in Online Trust? An Fmri Study on the Perceived Trustworthiness of Ebay Offers. MIS Quarterly, 34(2), 397–428. https://doi.org/10.2307/20721434
Sengupta, J., & Fitzsimons, G. J. (2004). The effect of analyzing reasons on the stability of brand attitudes: A reconciliation of opposing predictions. Journal of Consumer Research, 31(3), 705-711. https://doi.org/10.1086/425105
Shapiro, A. (2011). Users, Not Customers: Who Really Determines the Success of Your Business. New York, NY: Penguin Random House.
Shen, J., Najand, M., Dong, F., & He, W. (2017). News and social media emotions in the commodity market. Review of Behavioral Finance, 9(2), 148–168. https://doi.org/10.1108/rbf-09-2016-0060
Smidts, A. (2002). Kijken in het brein: Over de mogelijkheden van neuromarketing. ERIM Inaugural Address Series Research in Management. Retrieved from http://hdl.handle.net/1765/308
Talukder, M., & Quazi, A. (2011). The Impact of Social Influence on Individuals’ Adoption of Innovation. Journal of Organizational Computing and Electronic Commerce, 21(2), 111–135. https://doi.org/10.1080/10919392.2011.564483
Tirunillai, S., & Tellis, G. J. (2012). Does chatter really matter? Dynamics of user-generated content and stock performance. Marketing Science, 31(2), 198–215. https://doi.org/10.1287/mksc.1110.0682
Ulman, Y. I., Cakar, T., & Yildiz, G. (2015). Ethical issues in neuromarketing:“I consume, therefore I am!”. Science and Engineering Ethics, 21(5), 1271-1284. https://doi.org/10.1007/s11948-014-9581-5
Varga, Á. (2016). Neuromarketing, a marketingkutatás új iránya. Vezetéstudomány, 47(9), 55-63. http://unipub.lib.uni-corvinus.hu/2469/1/VT2016n9p55.pdf
Varga, Á., Simon, J., Pintér, A., Tóth, L. & Kozák, L. (2020). A fogyasztói etnocentrizmus idegi korrelációi – neuromarketing-kutatás az ismertség által okozott implicit agykérgi aktivitásmoduláció vizsgálatára. Vezetéstudomány, 51(3), 45-55. https://doi.org/10.14267/VEZTUD.2020.03.05
Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., ... & Babiloni, F. (2014). Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Computational and Mathematical Methods in Medicine, 2014, 912981. https://doi.org/10.1155/2014/912981
Vences, N. A., Díaz-Campo, J., & Rosales, D. F. G. (2020). Neuromarketing as an Emotional Connection Tool Between Organizations and Audiences in Social Networks. A Theoretical Review. Frontiers in Psychology, 11, 1787. https://doi.org/10.3389/fpsyg.2020.01787
Wilson, R. M., Gaines, J., & Hill, R. P. (2008). Neuromarketing and Consumer Free Will. Journal of Consumer Affairs, 42(3), 389–410. https://doi.org/10.1111/j.1745-6606.2008.00114.x
Zak, P. J. (2004). Neuroeconomics. Philosophical Transactions of the Royal Society B, 359(1451), 1737–1748. https://doi.org/10.1098/rstb.2004.1544
Zou, L, Lam, N. S. N., Cai, H. & Qiang, Y. (2018). Mining Twitter Data for Improved Understanding of Disaster Resilience, Annals of the American Association of Geographers, 108(5), 1422-1441. https://doi.org/10.1080/24694452.2017.1421897
Zurawicki, L. (2010). Neuromarketing. Boston, MA: Springer.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vezetéstudomány / Budapest Management Review
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors assign copyright to Vezetéstudomány / Budapest Management Review. Authors are responsible for permission to reproduce copyright material from other sources.