A desi-inspired digital development indicator for enterprises based on an SME digital readiness questionnaire
DOI:
https://doi.org/10.14267/VEZTUD.2023.09.01Keywords:
DESI, entropy-based objective weights, digital development, dimensionsAbstract
In this paper, the authors present a firm-level digital development indicator inspired by the European Commission’s DigitalEconomy and Society Index (DESI). This index was developed using an entropy-based objective weighting method based on a representative survey of 2500 firms. The index comprises five principal dimensions with the aim to evaluate the digital applications used by companies, their access to digital tools and infrastructure and the related skills (devices and network access; ICT skills and knowledge; general/external applications; specific/internal applications; use of digital public services). In addition to presenting the main dimensions, subdimensions and their entropy-based weights, the authors also analyse the relationships between firm size and digital dimensions using Analysis of Variance (ANOVA). Their results show that the effect of firm size will be significant for ICT skills and knowledge, general external applications and specific internal applications.
Downloads
References
Ahmad, A., Alshurideh, M. T., Al Kurdi, B. H., & Alzoubi, H. M. (2021). Digital strategies: A systematic literature review. In The International Conference on Artificial Intelligence and Computer Vision (pp. 807-822). Cham: Springer. https://doi.org/10.1007/978-3-030-76346-6_71
Bánhidi, Z., & Dobos, I. (2020). Az Európai Unió digitális gazdaság és társadalom indexének statisztikai elemzése. Statisztikai Szemle, 98(2), 149-168. https://doi.org/10.20311/stat2020.2.hu0149
Bánhidi, Z., Tokmergenova, M., & Dobos, I. (2022). A digitális gazdaság fejlettségének nemzetközi összehasonlítása, módszertani keretek. Információs Társadalom: Társadalomtudományi Folyóirat, 22(1), 9-28. https://dx.doi.org/10.22503/inftars.XXII.2022.1.1
Bouwman, H., Nikou, S., & de Reuver, M. (2019). Digitalization, business models, and SMEs: How do business model innovation practices improve performance of digitalizing SMEs? Telecommunications Policy, 43(9), 101828. https://doi.org/10.1016/j.telpol.2019.101828
Chakraborty, S., & Yeh, C. H. (2009). A simulation comparison of normalization procedures for TOPSIS. In 2009 International Conference on Computers & Industrial Engineering (pp. 1815-1820). IEEE. https://doi.org/10.1109/ICCIE.2009.5223811
Çallı, B. A., & Çallı, L. (2021). Relationships between digital maturity, organizational agility, and firm performance: An empirical investigation on SMEs. Business & Management Studies: An International Journal, 9(2), 486-502. https://doi.org/10.15295/bmij.v9i2.1786
Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2020). Antecedents, consequences, and challenges of small and medium-sized enterprise digitalization. Journal of Business Research, 112, 119-127. https://doi.org/10.1016/j.jbusres.2020.03.004
European Commission (2022). The Digital Economy and Society Index (DESI). https://digital-strategy.ec.europa.eu/en/policies/desi
Falciola, J., Jansen, M., & Rollo, V. (2020). Defining firm competitiveness: A multidimensional framework. World Development, 129, 104857. https://doi.org/10.1016/j.worlddev.2019.104857
Ferreira, J. J., Fernandes, C. I., & Ferreira, F. A. (2019). To be or not to be digital, that is the question: Firm innovation and performance. Journal of Business Research, 101, 583-590. https://doi.org/10.1016/j.jbusres.2018.11.013
Frank, A. G., Mendes, G. H., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change, 141, 341-351. https://doi.org/10.1016/j.techfore.2019.01.014
Gubán, Á., & Sándor, Á. (2021). A KKV-k digi- tálisérettség-mérésének lehetőségei. Vezetéstudomány, 52(3), 13-28. https://doi.org/10.14267/VEZTUD.2021.03.02
Gruber, H. (2019). Proposals for a digital industrial policy for Europe. Telecommunications Policy, 43(2), 116- 127. https://doi.org/10.1016/j.telpol.2018.06.003
Hizam-Hanafiah, M., Soomro, M. A., & Abdullah, N. L. (2020). Industry 4.0 readiness models: a systematic literature review of model dimensions. Information, 11(7), 364. https://doi.org/10.3390/info11070364
Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design (1980-2015), 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022
Kuusisto, O., Kääriäinen, J., Hänninen, K., & Saarela, M. (2021). Towards a micro-enterprise–focused digital maturity framework. International Journal of Innovation in the Digital Economy (IJIDE), 12(1), 72-85. https://doi.org/10.4018/IJIDE.2021010105
Martínez-Caro, E., Cegarra-Navarro, J. G., & Alfonso- Ruiz, F. J. (2020). Digital technologies and firm performance: The role of digital organisational culture. Technological Forecasting and Social Change, 154, 119962. https://doi.org/10.1016/j.techfore.2020.119962
Nasser, A. A., Alkhulaidi, A. A., Ali, M. N., Hankal, M., & Al-Olofe, M. (2019). A study on the impact of multiple methods of the data normalization on the result of SAW. WED and TOPSIS ordering in healthcare multi-attributtes decision making systems based on EW. ENTROPY. CRITIC and SVP weighting approaches. Indian Journal of Science and Technology, 12(4), 1-21. https://doi.org/10.17485/ijst/2019/v12i4/140756
Odu, G. O. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457. https://doi.org/10.4314/jasem.v23i8.7
Papathanasiou, J., & Ploskas, N. (2018). Topsis. In Multiple criteria decision aid (pp. 1-30). Cham: Springer. https://doi.org/10.1007/978-3-319-91648-4_1
Pirola, F., Cimini, C., & Pinto, R. (2019). Digital readiness assessment of Italian SMEs: a case-study research. Journal of Manufacturing Technology Management, 31(5), 1045-1083. https://doi.org/10.1108/JMTM-09-2018-0305
Şahin, M. (2021). A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. International Journal of Environmental Science and Technology, 18(6), 1591-1616. https://doi.org/10.1007/s13762-020-02922-7
Sarraf, R., & McGuire, M. P. (2021). Effect of Normalization on TOPSIS and Fuzzy TOPSIS. In 2021 Proceedings of the Conference on Information Systems Applied Research (pp. 1-18). Washington, D.C. http://proc.conisar.org/2021/pdf/5551.pdf
Schallmo, D. R., Lang, K., Hasler, D., Ehmig-Klassen, K., & Williams, C. A. (2021). An approach for a digital maturity model for SMEs based on their requirements. In Digitalization (pp. 87-101). Cham: Springer. https://doi.org/10.1007/978-3-030-69380-0_6
Soomro, M. A., Hizam-Hanafiah, M., & Abdullah, N. L. (2020). Digital readiness models: A systematic literature review. Compusoft, 9(3), 3596-3605. https://www.researchgate.net/publication/340443785_DIGITAL_READINESS_MODELS_A_SYSTEMATIC_LITERATURE_REVIEW
Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2021). Assessing normalization techniques for TOPSIS method. In Doctoral Conference on Computing. Electrical and Industrial Systems (pp. 132-141). Cham: Springer. https://doi.org/10.1007/978-3-030-78288-7_13
Vavrek, R. (2019). Evaluation of the impact of selected weighting methods on the results of the TOPSIS technique. International Journal of Information Technology & Decision Making, 18(06), 1821-1843. https://doi.org/10.1142/S021962201950041X
Vial, G. (2019). Understanding digital transformation: A review and a research agenda, The Journal of Strategic Information Systems 28(2), 118-144. https://doi.org/10.1016/j.jsis.2019.01.003
Viswanathan, R., & Telukdarie, A. (2021). A systems dynamics approach to SME digitalization. Procedia Computer Science, 180, 816-824. https://doi.org/10.1016/j.procs.2021.01.331
Wen, H., Zhong, Q., & Lee, C. C. (2022). Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. International Review of Financial Analysis, 82, 102166. https://doi.org/10.1016/j.irfa.2022.102166
Zou, Z. H., Yi, Y., & Sun, J. N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5), 1020-1023. https://doi.org/10.1016/S1001-0742(06)60032-6
Zilahy, G. & Széchy A. (2020). A hazai vállalati szféra környezeti teljesítménye a nemzetközi tendenciák tükrében. Vezetéstudomány, 51(1), 55-70. https://doi.org/10.14267/VEZTUD.2020.01.05
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vezetéstudomány / Budapest Management Review
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors assign copyright to Vezetéstudomány / Budapest Management Review. Authors are responsible for permission to reproduce copyright material from other sources.