A turizmus jelene és várható változása a mesterséges intelligencia integrálásával, különösen a Z-generáció igényeire fókuszálva

Authors

  • Pál Danyi Budapest University of Technology and Economics
  • Tamás Iványi Budapest University of Technology and Economics https://orcid.org/0000-0002-6878-701X
  • István Veres Budapest University of Technology and Economics

DOI:

https://doi.org/10.14267/VEZTUD.2020.KSZ.03

Keywords:

tourism, tourism marketing, artificial intelligence, smart tourism

Abstract

The authors’ research goal was to examine the usability of Artificial Intelligence technologies in tourism. According to their hypothesis, if we look into the future, the demands of Generation Z will be the most important, for which in most cases AI will provide solutions. Tourism has been growing steadily in all its parameters since 2013 while interconnecting with the infocommunication technologies. Tourism marketing and marketing communication are extremely important elements in maintaining trends, increasing the number of tourists, and improving their satisfaction by well-founded decisions of destinations and service providers. In all of these, the most important tool in the near future will be artificial intelligence (AI). In this study, the authors presented a literature review in detail to prove that international research and developments are focusing more and more on AI. After analyzing 50 relevant publications, they constructed a hype map, on which AI solutions were grouped into 4 categories, and in two dimensions of problem owners’ functional needs, as well as technologies. In addition, they conducted 5 focus group sessions, in which young people of Generation Z were asked about their travelling habits, and the role of AI in their travel process. Finally, summarizing their secondary and primary research, the authors built a table where they mapped the exhaustive list of expected and potential AI solutions to each of the 14 steps of their travel process model.

Downloads

Download data is not yet available.

Author Biographies

Pál Danyi, Budapest University of Technology and Economics

Associate Professor

Tamás Iványi, Budapest University of Technology and Economics

Assistant lecturer

István Veres, Budapest University of Technology and Economics

Senior Lecturer

References

Aho, S. K. (2001). Towards a general theory of touristic experiences: Modelling experience process in Tourism. Tourism Review, 56(3-4), 33-37. https://doi.org/10.1108/eb058368

Apáthy, M. S. (2017). Turistatípusok azonosítása – egy lehetséges turisztikai ajánlórendszer, Vezetéstudomány, 48(1), 30-40. https://doi.org/10.14267/VEZTUD.2017.01.03

Barberstock (2019). Artificial Intelligence (AI) in the Tourism Industry: What Every DMO Needs to Know. Retrieved from https://www.barberstock.com/website/blog/artificial-intelligence-ai-in-the-tourism-industry-what-every-dmo-needs-to-know/

Becken, S., Connolly, R., Stantic, B., Scott, N., Mandal, R., & Le, D. (2018). Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence. Queensland: Griffith University. Retrieved from https://www.griffith.edu.au/__data/assets/pdf_file/0024/313971/NESP_Final-Report.pdf

Benckendorff, P. J., Xiang, Z., & Sheldon, P.J. (2019). Tourism Information Technology (3rd ed.). Wellingford, UK: CABI. Retrieved from https://doi.org/10.1079/9781786393432.0000

Brückner, G. (2019). Nemcsak Bled, de Velence, Míkonocs és Izland sem bír már a turistaáradattal. Index.hu. Retrieved from https://index.hu/gazdasag/2019/04/27/nem_csak_bled_de_velence_mikonosz_es_izland_sem_bir_mar_a_turista-aradattal/

Buhalis, D. (2000). Marketing the Competitive Destination of the Future. Tourism Management, 21(1), 97-116. https://doi.org/10.1016/S0261-5177(99)00095-3

Buhalis, D., & Sinarta Y. (2019). Real-time co-creation and nowness service: lessons from tourism and hospitality. Journal of Travel & Tourism Marketing, 36(5), 563-582. https://doi.org/10.1080/10548408.2019.1592059

da Costa Liberato, P.M., Alén-González, E., & de Azevedo Liberato, D.F.V. (2018). Digital Technology in a Smart Tourist Destination: The Case of Porto. Journal of Urban Technology, 25(1), 75-97. https://doi.org/10.1080/10630732.2017.1413228

Danyi P. (2018). A mesterséges intelligencia alkalmazása az árazásban. Marketing és Menedzsment, 52(3-4), 5-18. Retrieved from https://journals.lib.pte.hu/index.php/mm/article/view/1056

Giglio, S., Bertacchini, F., Bilotta, E., & Pantano P. (2019). Using social media to identify tourism attractiveness in six Italian cities. Tourism Management, 72(Jun), 306-312. https://doi.org/10.1016/j.tourman.2018.12.007

Google Scholar (2019). Artificial intelligence in tourism. Retrieved from https://scholar.google.hu/scholar?as_ylo=2018&q=artificial+intelligence+in+tourism&hl=en&as_sdt=0,5

Gyulavári T., Mitev A. Z,, Neulinger Á., Neumann-Bódi E., Simon J., & Szűcs K. (2014). A marketingkutatás alapjai. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789630598880

Kotler, P., Bowen, J. T., & Makens, J. C. (2010). Marketing for Hospitality and Tourism. New Jersey: Pearson Education.

Kovács, M. D. (2019). A város szégyene lett a világ legnagyobb Jézus-szobra. Index.hu. Retrieved from https://index.hu/kultur/2019/05/24/krisztus_kiraly_szobor_swiebodzin_pomnik_chrystusa_krola_a_vilag_legnagyobb_jezus-szobrai/

Kozma, B. M. (2000). Desztinációmarketing. Tér és Társadalom, 14(2-3), 195-202. https://doi.org/10.17649/TET.14.2-3.586

KSH (2018a). Helyzetkép a turizmus, vendéglátás ágazatról 2017. Retrieved from http://www.ksh.hu/docs/hun/xftp/idoszaki/jeltur/jeltur17.pdf

KSH (2018b). Háztartások fogyasztása, 2018. Retrieved from http://www.ksh.hu/docs/hun/xftp/stattukor/haztfogy/haztfogy1806.pdf

KSH (2017). A háztartások életszínvonala, 2017. Retrieved from http://www.ksh.hu/docs/hun/xftp/idoszaki/hazteletszinv/hazteletszinv17.pdf

Kulcsár N. (2015). A fogyasztói érték és az élmény kontextusa a turisztikai irodalomban. Vezetéstudomány, 46(5), 18-25.

Lőrincz, K., & Sulyok, J. (2017). Turizmusmarketing. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789634540601

Malhotra, N. K., & Simon, J. (2009). Marketingkutatás. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789630598675

Michalkó, G., & Rátz, T. (2005). A kulturális turizmus élménygazdaságtani szempontjai. In Egyedi Gy., & Keresztély K. (szerk.) A magyar városok kulturális gazdasága (pp. 123-141.). Budapest: MTA Társadalomkutató Központ.

Michalkó, G. (2012). Turizmológia. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789630597173

Moreno-Izquierdo, L., Egorova, G., Peretó-Rovira, A., & Más-Ferrando, A. (2018). Exploring the use of artificial intelligence in price maximisation in the tourism sector. Investigaciones Regionales – Journal of Regional Research, 42, 113-128. https://rua.ua.es/dspace/bitstream/10045/86772/1/2018_Moreno-Izquierdo_etal_InvRegionales-113-128.pdf

MTÜ (2018). A turizmus eredményei Magyarországon. Retrieved from https://mtu.gov.hu/cikkek/a-turizmus-eredmenyei-magyarorszagon

Nerngchamnong, K., Kaviya, S., Fujii, Y., & Yupapin, P. (2011). World Heritage City Surveillance System by a Smart CCTV System. Procedia Engineering, 8, 321- 327. https://doi.org/10.1016/j.proeng.2011.03.060

Pap-Váry, Á. F.( 2019). Országimázs – mégis milyen a márkázás. Vezetéstudomány, 50(3), 25-35. https://doi.org/10.14267/VEZTUD.2019.03.03

Quan, S., & Wang N. (2004). Towards a structural model of the tourist experience. Tourism Management, 25(3), 297-305. https://doi.org/10.1016/S0261-5177(03)00130-4

Tavakoli, R., & Mura, P. (2018). Netnography in Tourism – Beyond Web 2.0. Annals of Tourism Research, 73, 190-192. https://doi.org/10.1016/j.annals.2018.06.002

Thelwall, M. (2019). Sentiment Analysis for Tourism. In Sigala, M., Rahimi, R., & Thelwall, M. (eds.), Big Data and Innovation in Tourism, Travel and Hospitality (pp. 84-104). Singapore: Springer. https://doi.org/10.1007/978-981-13-6339-9_6

Törőcsik, M. (2011). Fogyasztói magatartás. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789630597371

Tsaih, R. H., & Hsu, C. C. (2018), Artificial Intelligence in Smart Tourism: A Conceptual Framework. In Proceedings of the 18th International Conference on Electronic Business (pp. 124-133). ICEB, Guilin, China, December 2-6, 2018.

Turizmus (2019). Nyolc utazási trend 2019-ben. Retrieved from https://turizmus.com/desztinaciok/nyolc-utazasitrend-2019-re-1161575

Ukpabi, D., Karjaluoto, H., Olaleye, S. A., & Mogaji, E. (2018). Dual Perspectives on the Role of Artificially Intelligent Robotic Virtual Agents in the Tourism, Travel and Hospitality Industries. In Vrontis, D., Weber, Y., & Tsoukatos, E. (eds.), Proceedings of the 11th Annual Conference of the EuroMed Academy of Business (EMAB) (pp. 1339-1351). Retrieved from http://www.emrbi.org/bop2018.pdf

Vargas-Sánchez, A. (2016). Exploring the Concept of Smart Tourism Destination. Enlightening Tourism. A Pathmaking Journal, 6(2), 178-196. Retrieved from http://rabida.uhu.es/dspace/bitstream/handle/10272/12984/Exploring_the_concept.pdf?sequence=5

Veres, Z. (2014). A szolgáltatásmarketing alapkönyve. Budapes: Akadémiai Kiadó. https://doi.org/10.1556/9789630597395

Veres, Z., Hoffmann, M., & Kozák, Á. (2017). Bevezetés a piackutatásba. Budapest: Akadémiai Kiadó. https://doi.org/10.1556/9789634540038

Volo, S. (2009). Conceptualizing experience: A tourist based approach. Journal of Hospitality Marketing & Management, 18(2), 111-126. https://doi.org/10.1080/19368620802590134

Zátori, A. (2014). Élményszemlélet a turizmusban: A turisztikai élményteremtés koncepciói. Turizmus Bulletin, 16(2), 51-60.

Zoodikers (2018). How AI is transforming the tourism industry. Retrieved from https://zoodikers.com/2018/06/ai-transforming-tourism-industry/

Downloads

Published

2020-12-09

How to Cite

Danyi, P., Iványi, T., & Veres, I. (2020). A turizmus jelene és várható változása a mesterséges intelligencia integrálásával, különösen a Z-generáció igényeire fókuszálva. Vezetéstudomány Budapest Management Review, 51(KSZ), 19–34. https://doi.org/10.14267/VEZTUD.2020.KSZ.03

Issue

Section

Studies and Articles