Külföldi csődelőrejelző módszerek szisztematikus irodalomelemzése

Szerzők

DOI:

https://doi.org/10.14267/VEZTUD.2022.01.06

Kulcsszavak:

csődelőrejelzés, szisztematikus irodalomelemzés, fizetésképtelenség, üzleti kudarc, pénzügyi nehézség

Absztrakt

A vállalati fizetésképtelenség, csőd és pénzügyi nehézség vizsgálata egy intenzív kutatási terület, amelynek számos különböző gyakorlati eljárása megfigyelhető. A tanulmány a vállalati csődelőrejelzés külföldi szakirodalmát vizsgálja, a szisztematikus irodalomelemzés módszerével. A kutatás célkitűzése kettős, elsősorban megvizsgálja a vállalati csődelőrejelzés legjobban teljesítő módszereit, másodsorban felfedi az ehhez kapcsolódó legyakoribb tényezőket, a magasan hivatkozott külföldi csődkutatások alapján. Három tudományos adatbázist felhasználva, 105 szakirodalmi cikket dolgoztak fel, amelyeket 1966 és 2017 közötti időszakban tettek közzé. A szakirodalmi áttekintés, hat módszercsalád összehasonlítását teszi lehetővé. Az eredmények azt mutatják, hogy a döntési fa módszercsalád fölülmúlja az SVM, a neuronháló és a hagyományos statisztikai módszereket. A közepes pontosságú módszerek közül a példányalapú módszercsalád és a logisztikus regresszió összemérésekor nem lehetett egyértelmű rangsort felállítani. A csőd tényezőinek vizsgálatánál körvonalazódott, hogy a hagyományos pénzügyi mutatók mellet alkalmazott piaci mutatók átlagosan nem vezetnek magasabb előrejelző pontossághoz, mint a csak kizárólag pénzügyi mutatókat tartalmazó modellek.

Letöltések

Letölthető adat még nem áll rendelkezésre.

Információk a szerzőről

Norbert Ágoston, Pécsi Tudományegyetem

PhD-hallgató

Hivatkozások

Abidali, A. F. & Harris, F. (1995). A methodology for predicting company failure in the construction industry. Construction Management and Economics, 13(3), 189- 196. https://doi.org/10.1080/01446199500000023

Ahn, H. & Kim, K. J. (2009). Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing, 9(2), 599-607. https://doi.org/10.1016/j.asoc.2008.08.002

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O, Akinade, O. O. & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E. I., Eom, Y. H. & Kim, D. W. (1995). Failure prediction: evidence from Korea. Journal of International Financial Management & Accounting, 6(3), 230-249. https://doi.org/10.1111/j.1467-646x.1995.tb00058.x

Alfaro, E., García, N., Gámez, M. & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110-122. https://doi.org/10.1016/j.dss.2007.12.002

Anandarajan, M., Lee, P. & Anandarajan, A. (2001). Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks. Intelligent Systems in Accounting, Finance & Management, 10(2), 69-81. https://doi.org/10.1002/isaf.199

Appiah, K. O., Chizema, A., & Arthur, J. (2015). Predicting corporate failure: a systematic literature review of methodological issues. International Journal of Law and Management, 57(5), 461-485. http://dx.doi.org/10.1108/IJLMA-04-2014-0032

Aziz, A., Emanuel, D. C. & Lawson, G. H. (1988). Bankruptcy prediction ‐ An investigation of cash flow based models (1). Journal of Management Studies, 25(5), 419-437. https://doi.org/10.1111/j.1467-6486.1988.tb00708.x

Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. https://doi.org/10.1016/j.bar.2005.09.001

Baldwin, J. & Glezen, G. W. (1992). Bankruptcy prediction using quarterly financial statement data. Journal of Accounting, Auditing & Finance, 7(3), 269-285. https://doi.org/10.1177/0148558x9200700301

Barboza, F., Kimura, H. & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006

Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. https://doi.org/10.2307/2490171

Bellovary, J., Giacomino, D. & Akers, M. (2007). A review of bankruptcy prediction studies: 1930-present. Journal of Finance Education, 33. 1-42.

Berg, D. (2007). Bankruptcy prediction by generalized additive models. Applied Stochastic Models in Business and Industry, 23(2), 129-143. https://doi.org/10.1002/asmb.658

Beynon, M. J. & Peel, M. J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29(6), 561-576. https://doi.org/10.1016/s0305-0483(01)00045-7

Boritz, J. E., Kennedy, D. B. & Albuquerque, A. D. M. E. (1995). Predicting corporate failure using a neural network approach. Intelligent Systems in Accounting, Finance and Management, 4(2), 95-111. https://doi.org/10.1002/j.1099-1174.1995.tb00083.x

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and regression trees. California: Wadsworth.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/bf00058655

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324

Bruno, A. V. & Leidecker, J. K. (1988). Causes of new venture failure: 1960s vs. 1980s. Business Horizons, 31(6), 51-56. https://doi.org/10.1016/0007-6813(88)90024-9

Casey, C. & Bartczak, N. (1985.: Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 23(1), 384-401. https://doi.org/10.2307/2490926

Charitou, A., Neophytou, E. & Charalambous, C. (2004). Predicting corporate failure: empirical evidence for the UK. European Accounting Review, 13(3), 465-497. https://doi.org/10.1080/0963818042000216811

Chaudhuri, A. & De, K. (2011). Fuzzy support vector machine for bankruptcy prediction. Applied Soft Computing, 11(2), 2472-2486. https://doi.org/10.1080/0963818042000216811

Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537-569. https://doi.org/10.1007/s10679-004-6279-6

Chen, W. S. & Du, Y. K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086. https://doi.org/10.1016/j.eswa.2008.03.020

Chen, M. Y. (2011a). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers & Mathematics with Applications, 62(12), 4514-4524. https://doi.org/10.1016/j.camwa.2011.10.030

Chen, M. Y. (2011b). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 38(9), 11261-11272. https://doi.org/10.1016/j.eswa.2011.02.173

Ciampi, F. (2015). Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms. Journal of Business Research, 68(5), 1012-1025. https://doi.org/10.1016/j.jbusres.2014.10.003

Coats, P. & Fant, L. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22(3), 142-155. https://doi.org/10.2307/3665934

Constand, L. R. & Yazdipour, R. (2011). Firm failure prediction models: a critique and a review of recent developments. In Yazdipour, R. (Ed.), Advances in Enterpreneurial Finance: With Applicantions from behavioral Finance and Economics (pp. 185-204). New York: Springer Science and Business Media. https://doi.org/10.1007/978-1-4419-7527-0_10

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/bf00994018

Dewaelheyns, N. & Van Hulle, C. (2006). Corporate failure prediction modeling: Distorted by business groups’ internal capital markets? Journal of Business Finance & Accounting, 33(5‐6), 909-931. https://doi.org/10.1111/j.1468-5957.2006.00009.x

De Andrés, J., Lorca, P., de Cos Juez, F. J. & Sánchez-Lasheras, F. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multi- variate Adaptive Regression Splines (MARS). Expert Systems with Applications, 38(3), 1866-1875. https://doi.org/10.1016/j.eswa.2010.07.117

Delen, D., Kuzey, C. & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970-3983. https://doi.org/10.1016/j.eswa.2013.01.012

Dimitras, A. I., Slowinski, R., Susmaga, R. & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114(2), 263-280. https://doi.org/10.1016/s0377-2217(98)00255-0

Du Jardin, P. & Séverin, E. (2011). Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model. Decision Support Systems, 51(3), 701-711. https://doi.org/10.1016/j.dss.2011.04.001

Du Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Operational Research, 242(1), 286-303. https://doi.org/10.1016/j.ejor.2014.09.059

Duan, J. C., Sun, J. & Wang, T. (2012). Multiperiod corporate default prediction - A forward intensity approach. Journal of Econometrics, 170(1), 191-209. https://doi.org/10.1016/j.jeconom.2012.05.002

Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665. https://doi.org/10.1016/j.jfineco.2005.10.011

Dun and Bradstreet (1978). The Business Failure Record. New York: Dun and Bradstreet Inc.

Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7(2), 1477- 1493. https://doi.org/10.2307/2329929

Engelmann, B., Hayden, E., & Tasche, D. (2003). Measuring the discriminative power of rating systems. Discussion Paper, Series 2. Banking and financing Super- vision. Deutsche Bundesbank, Frankfurt. https://www.bundesbank.de/resource/blob/704150/b9fa10a16dfff-3c98842581253f6d141/mL/2003-10-01-dkp-01-data.pdf

Etemadi, H., Rostamy, A. A. A. & Dehkordi, H. F. (2009). A genetic programming model for bankruptcy prediction: Empirical evidence from Iran. Expert Systems with Applications, 36(2), 3199-3207. https://doi.org/10.1016/j.eswa.2008.01.012

Fan, A. & Palaniswami, M. (2000). Selecting bankruptcy predictors using a support vector machine approach. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, Vol. 6, (pp. 354-359). Piscataway: IEEE. https://doi.org/10.1109/ijcnn.2000.859421

Fedorova, E., Gilenko, E. & Dovzhenko, S. (2013). Bankruptcy prediction for Russian companies: Application of combined classifiers. Expert Systems with Applications, 40(18), 7285-7293. https://doi.org/10.1016/j.eswa.2013.07.032

Fletcher, D. & Goss, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information & Management, 24(3), 159-167. https://doi.org/10.1016/0378-7206(93)90064-z

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. International Conference on Machine Learning, 96, 148-156.

Frydman, H., Altman, E. I. & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40(1), 269-291. https://doi.org/10.1111/j.1540-6261.1985.tb04949.x

Geng, R., Bose, I. & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247. https://doi.org/10.1016/j.ejor.2014.08.016

Gentry, J. A., Newbold, P. & Whitford, D. T. (1985). Classifying bankrupt firms with funds flow components. Journal of Accounting Research, 23(1), 146-160. https://doi.org/10.2307/2490911

Gombola, M. J., Haskins, M. E., Ketz, J. E. & Williams, D. D. (1987). Cash flow in bankruptcy prediction. Financial Management, 16(4), 55-65. https://doi.org/10.2307/3666109

Greenwald, D. (1973). The McGraw-Hill Dictionary of Modern Economics: A Handbook of Terms and Organizations. New York: McGraw-Hill Book Company.

Grice, J. S. & Ingram, R. W. (2001). Tests of the generalizability of Altman’s bankruptcy prediction model. Journal of Business Research, 54(1), 53-61. https://doi.org/10.1016/s0148-2963(00)00126-0

Hámori, G. (2001). A CHAID alapú döntési fák jellemzői. Statisztikai Szemle, 79(8), 703-710. https://www.ksh.hu/statszemle_archive/2001/2001_08/2001_08_703.pdf

Hernandez Tinoco, M. & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394-419. https://doi.org/10.1016/j.irfa.2013.02.013

Hertz, J., Krogh, A. & Palmer, R. (1991). Introduction to the theory of neural computing. New York: Addison Wesley. Hillegeist, S. A., Keating, E. K., Cram, D. P. & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5-34. https://doi.org/10.1023/b:rast.0000013627.90884.b7

Horta, I. M. & Camanho, A. S. (2013). Company failure prediction in the construction industry. Expert Systems with Applications, 40(16), 6253-6257. https://doi.org/10.1016/j.eswa.2013.05.045

Hu, Y-C. & Tseng, F-M. (2007). Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing, 70, 2959-2968. https://doi.org/10.1016/j.neucom.2006.10.111

Hua, Z., Wang, Y., Xu, X., Zhang, B. & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434-440. https://doi.org/10.1016/j.eswa.2006.05.006

Huang, S. M., Tsai, C. F., Yen, D. C. & Cheng, Y. L. (2008). A hybrid financial analysis model for business failure prediction. Expert Systems with Applications, 35(3), 1034-1040. https://doi.org/10.1016/j.eswa.2007.08.040

Johnsen, T. & Melicher, R. W. (1994). Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models. Journal of Economics and Business, 46(4), 269-286. https://doi.org/10.1016/0148-6195(94)90038-8

Jones, S. & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. The Accounting Review, 79(4), 1011-1038. https://doi.org/10.2308/accr.2004.79.4.1011

Jones, S. & Hensher, D. A. (2007). Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes. The British Accounting Review, 39(1), 89-107. https://doi.org/10.1016/j.bar.2006.12.003

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society: Series C (Applied Statis- tics), 29(2), 119-127. https://doi.org/10.2307/2986296

Kim, M. J. & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373-3379. https://doi.org/10.1016/j.eswa.2009.10.012

Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468. https://doi.org/10.1080/02642060802712848

Korol, T. (2013). Early warning models against bankruptcy risk for Central European and Latin American enterprises. Economic Modelling, 31, 22-30. https://doi.org/10.1016/j.econmod.2012.11.017

Kristóf, T. (2004). Mesterséges intelligencia a csődelőrejelzésben. Jövőtanulmányok, 21.

Kristóf, T. (2005). Szervezetek jövőbeni fennmaradása különböző megközelítésekben. Vezetéstudomány, 36(9), 15-23. https://doi.org/10.14267/VEZTUD.2005.09.02

Kristóf, T. (2018). A case-based reasoning alkalmazása a hazai mikrovállalkozások csődelőrejelzésére. Statisztikai Szemle, 96(11-12), 1109-1128. https://doi.org/10.20311/stat2018.11-12.hu1109

Kristóf, T. & Virág, M. (2019). A csődelőrejelzés fejlődéstörténete Magyarországon. Vezetéstudomány, 50(12), 62-73. https://doi.org/10.14267/veztud.2019.12.06

Kristóf, T. & Virág, M. (2020). A comprehensive review of corporate bankruptcy prediction in Hungary. Journal of Risk and Financial Management, 13(2), 35 https://doi.org/10.3390/jrfm13020035

Laitinen, E. K. (1992). Prediction of failure of a newly founded firm. Journal of Business Venturing, 7(4), 323-340. https://doi.org/10.1016/0883-9026(92)90005-c

Laitinen, E. K. (1993). Financial predictors for different phases of the failure process. Omega, 21(2), 215-228. https://doi.org/10.1016/0305-0483(93)90054-o

Lau, A. H. L. (1987). A five-state financial distress prediction model. Journal of Accounting Research, 25(1), 127-138. https://doi.org/10.2307/2491262

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Lee, K., Booth, D. & Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications, 29(1), 1-16. https://doi.org/10.1016/j.eswa.2005.01.004

Lee, S. & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40(8), 2941-2946. https://doi.org/10.1016/j.eswa.2012.12.009

Leshno, M. & Spector, Y. (1996). Neural network prediction analysis: The bankruptcy case. Neurocomputing, 10(2), 125-147. https://doi.org/10.1016/0925-2312(94)00060-3

Li, H. & Sun, J. (2008). Ranking-order case-based reasoning for financial distress prediction. Knowledge-based Systems, 21(8), 868-878. https://doi.org/10.1016/j.knosys.2008.03.047

Li, H. & Sun, J. (2009). Majority voting combination of multiple case-based reasoning for financial distress prediction. Expert Systems with Applications, 36(3), 4363-4373. https://doi.org/10.1016/j.eswa.2008.05.019

Li, H. & Sun, J. (2012). Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples–Evidence from the Chinese hotel industry. Tourism Management, 33(3), 622-634. https://doi.org/10.1016/j.tourman.2011.07.004

Liang, D., Lu, C. C., Tsai, C. F. & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572. https://doi.org/10.1016/j.ejor.2016.01.012

Lin, T. H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16-18), 3507-3516. https://doi.org/10.1016/j.neucom.2009.02.018

Lin, F., Liang, D., Yeh, C. C. & Huang, J. C. (2014). Novel feature selection methods to financial distress prediction. Expert Systems with Applications, 41(5), 2472-2483. https://doi.org/10.1016/j.eswa.2013.09.047

Liu, D., Li, T. & Liang, D. (2014). Incorporating logistic regression to decision-theoretic rough sets for classifications. International Journal of Approximate Reasoning, 55(1), 197-210. https://doi.org/10.1016/j.ijar.2013.02.013

Luoma, M. & Laitinen, E. K. (1991). Survival analysis as a tool for company failure prediction. Omega, 19(6), 673-678. https://doi.org/10.1016/0305-0483(91)90015-l

Lussier, R. N. (1995). A nonfinancial business success versus failure prediction model for young firms. Journal of Small Business Management, 33(1), 8-20.

Mayew, W. J., Sethuraman, M. & Venkatachalam, M. (2015). MD&A disclosure and the firm’s ability to continue as a going concern. The Accounting Review, 90(4), 1621-1651. https://doi.org/10.2308/accr-50983

McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory. Intelligent Systems in Accounting, Finance & Management 9(3), 159-173. https://doi.org/10.1002/1099-1174(200009)9:3%3C159::aid-isaf184%3E3.0.co;2-c

McKee, T. E. & Greenstein, M. (2000). Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of Forecasting, 19(3), 219-230. https://doi.org/10.1002/(sici)1099-131x(200004)19:3%3C219::aid-for752%3E3.0.co;2-j

McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signalling rates. Journal of Forecasting, 22(8), 569-586. https://doi.org/10.1002/for.875

Mensah, Y. M. (1983). The differential bankruptcy predictive ability of specific price level adjustments: some empirical evidence. Accounting Review, 58(2), 228- 246. https://www.jstor.org/stable/246832

Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 22(1), 380-395. https://doi.org/10.2307/2490719

Min, J. H. & Jeong, C. (2009). A binary classification method for bankruptcy prediction. Expert Systems with Applications, 36(3), 5256-5263. https://doi.org/10.1016/j.eswa.2008.06.073

Moher, D., Liberati, A ., Tetzlaff, J. & Altman, D. G. (2009). The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta Analyses: The PRISMA Statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097

Mossman, C. E., Bell, G. G., Swartz, L. M. & Turtle, H. (1998). An empirical comparison of bankruptcy models. Financial Review, 33(2), 35-54. https://doi.org/10.1111/j.1540-6288.1998.tb01367.x

Murthy, S. K., Kasif, S., Salzberg, S. & Beigel, R. (1993). OC1: A randomized algorithm for building oblique decision trees. Proceedings of AAAI, 93, 322-327.

Nam, J. H. & Jinn, T. (2000). Bankruptcy prediction: Evidence from Korean listed companies during the IMF crisis. Journal of International Financial Management & Accounting, 11(3), 178-197. https://doi.org/10.1111/1467-646x.00061

Nam, C. W., Kim, T. S., Park, N. J. & Lee, H. K. (2008). Bankruptcy prediction using a discrete time duration model incorporating temporal and macroeconomic dependencies. Journal of Forecasting, 27(6), 493- 506. https://doi.org/10.1002/for.985

Neophytou, E. & Mar Molinero, C. (2004). Predicting corporate failure in the UK: a multidimensional scaling approach. Journal of Business Finance & Accounting, 31(5‐6), 677-710. https://doi.org/10.1111/j.0306-686x.2004.00553.x

Nicolas, J. & Toval, A. (2009). On the generation of requirements specifications from software engineering models: a systematic literature review. Information and Software Technology, 51, 1291-1307. https://doi.org/10.1016/j.infsof.2009.04.001

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://doi.org/10.1038/nbt1206-1565

Nyitrai, T. (2014). Validációs eljárások a csődelőrejelző modellek teljesítményének megítélésében. Statisztikai Szemle, 92(4), 357-377.

Nyitrai, T. (2015). Hazai vállalkozások csődjének előrejelzése a csődeseményt megelőző egy, két, illetve három évvel korábbi pénzügyi beszámolók adatai alapján. Vezetéstudomány, 46(5), 55-65. https://doi.org/10.14267/veztud.2015.05.06

Nyitrai, T. (2017). Stock és flow típusú számviteli adatok alkalmazása a csődelőrejelző modellekben. Vezetéstudomány, 48(8-9), 68-77. https://doi.org/10.14267/veztud.2017.09.07

Nyitrai, T. (2019). Dynamization of bankruptcy models via indicator variables. Benchmarking: An International Journal, 26(1), 317-332. https://doi.org/10.1108/bij-03-2017-0052

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. https://doi.org/10.2307/2490395

Oravecz, B. (2007). Credit scoring modellek és teljesítményük értékelése. Hitelintézeti Szemle, 6(6), 607-627. Peel, M. J. & Peel, D. A. (1987). Some further empirical evidence on predicting private company failure. Accounting and Business Research, 18(69), 57-66. https://doi.org/10.1080/00014788.1987.9729348

Platt, H. D. & Platt, M. B. (1990). Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance & Accounting, 17(1), 31-51. https://doi.org/10.1111/j.1468-5957.1990.tb00548.x

Platt, H. D. & Platt, M. B. (1991). A note on the use of industry-relative ratios in bankruptcy prediction. Journal of Banking & Finance, 15(6), 1183-1194. https://doi.org/10.1016/0378-4266(91)90057-s

Platt, H. D., Platt, M. B. & Pedersen, J. G. (1994). Bankruptcy discrimination with real variables. Journal of Business Finance & Accounting, 21(4), 491-510. https://doi.org/10.1111/j.1468-5957.1994.tb00332.x

Pompe, P. P. M. & Feelders, A. J. (1997). Using machine learning, neural networks, and statistics to predict corporate bankruptcy. Computer‐Aided Civil and Infrastructure Engineering, 12(4), 267-276. https://doi.org/10.1111/0885-9507.00062

Pompe, P. P. & Bilderbeek, J. (2005). The prediction of bankruptcy of small-and medium-sized industrial firms. Journal of Business Venturing, 20(6), 847-868. https://doi.org/10.1016/j.jbusvent.2004.07.003

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. https://doi.org/10.1007/bf00116251

Quinlan, J. R. (1993). C4.5: Programming for machine learning. Morgan Kaufmann Publishers, San Mateo, California.

Quinlan, J. R. (1997). C5.0 and see 5: Illustrative examples. RuleQuest Research.

Rafiei, F. M., Manzari, S. M. & Bostanian, S. (2011). Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 38(8), 10210-10217. https://doi.org/10.1016/j.eswa.2011.02.082

Ratting, A. (2015). Fizetésképtelenség-előrejelzési megközelítések. Társadalom és Gazdaság, 7(3), 53-73. https://doi.org/10.21637/gt.2015.3.04

Ravi Kumar, P. & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043

Russell, S. & Norvig, P. (2005). Mesterséges intelligencia modern megközelítésben. Budapest: Panem Könyvkiadó.

Ryu, Y. U. & Yue, W. T. (2005). Firm bankruptcy prediction: experimental comparison of isotonic separation and other classification approaches. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(5), 727-737. https://doi.org/10.1109/tsmca.2005.843393

Sajtos, L. & Mitev, A. (2007). SPSS kutatási és adatelemzési kézikönyv. Budapest: Alinea Kiadó.

Sandin, A. R. & Porporato, M. (2007). Corporate bankruptcy prediction models applied to emerging economies. International Journal of Commerce and Management, 17(4), 295 – 311. https://doi.org/10.1108/10569210710844372

Scherger, V., Terceño, A. & Vigier, H. (2019). A systematic overview of the prediction of business failure. International Journal of Technology, Policy and Management, 19(2), 196-211. https://doi.org/10.1504/ijtpm.2019.100601

Sharma S. & Mahajan, V. (1980). Early Warning Indicators of Business Failure. Journal of Marketing, 44(4), 80-89. https://doi.org/10.1177/002224298004400412

Shetty, U., Pakkala, T. P. M. & Mallikarjunappa, T. (2012). A modified formulation of DEA to assess bankruptcy: An application to IT/ITES companies in India. Expert Systems with Applications, 39(2), 1988-1997. https://doi.org/10.1016/j.eswa.2011.08.043

Shi, Y. & Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A Systematic literature review. Intangible Capital, 15(2), 114-127. https://doi.org/10.3926/ic.1354

Shin, K. S. & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328. https://doi.org/10.1016/s0957-4174(02)00051-9

Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127- 135. https://doi.org/10.1016/j.eswa.2004.08.009

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101-124. https://doi.org/10.1086/209665

Sun, J. & Li, H. (2008). Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 35(3), 818-827. https://doi.org/10.1016/j.eswa.2007.07.045

Sun, J. & Li, H. (2009). Financial distress early warning based on group decision making. Computers & Operations Research, 36(3), 885-906. https://doi.org/10.1016/j.cor.2007.11.005

Sun, J., Jia, M. Y. & Li, H. (2011). AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert Systems with Applications, 38(8), 9305-9312. https://doi.org/10.1016/j.eswa.2011.01.042

Szabadosné, Németh Zs. & Dávid, L. (2005). A kis- és középvállalati szegmens mulasztási valószínűségének előrejelzése magyarországi környezetben. Hitelintézeti Szemle, 4(3), 39-58.

Székelyi, M. & Barna, I. (2008). Túlélő készlet az SPSS- hez. Budapest: Typotex.

Takahashi, K., Kurokawa, Y. & Watase, K. (1984). Corporate bankruptcy prediction in Japan. Journal of Banking & Finance, 8(2), 229-247. https://doi.org/10.1016/0378-4266(84)90005-0

Teng, H. S. S., Bhatia, G. S. & Anwar, S. (2011). A success versus failure prediction model for small businesses in Singapore. American Journal of Business, 26(1), 50- 64. https://doi.org/10.1108/19355181111124106

Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business Finance & Accounting, 18(5), 697-720. https://doi.org/10.1111/j.1468-5957.1991.tb00233.x

Theodossiou, P. T. (1993). Predicting shifts in the mean of a multivariate time series process: an application in predicting business failures. Journal of the American Statistical Association, 88(422), 441-449. https://doi.org/10.1080/01621459.1993.10476294

Tian, S., Yu, Y. & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100. https://doi.org/10.1016/j.jbankfin.2014.12.003

Tranfield, D., Denyer, D. & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375

Tsukuda, J. & Baba, S. I. (1994). Predicting Japanese corporate bankruptcy in terms of financial data using neural network. Computers & Industrial Engineering, 27(1-4), 445-448. https://doi.org/10.1016/0360-8352(94)90330-1

Virág, M. (2001). Pénzügyi elemzés csődelőrejelzés. Budapest: Kossuth Kiadó.

Virág, M. (2004). A csődmodellek jellegzetességei és története. Vezetéstudomány, 35(10), 24-32. http://unipub.lib.uni-corvinus.hu/4551/1/VT_2004n10p24.pdf

Virág, M. & Dóbé, S. (2005). A hazai csődmodell-család alkalmazása ágazati centroidokra. Vezetéstudomány, 36(4), 45-54. https://doi.org/10.14267/VEZTUD.2005.04.05

Virág, M. & Kristóf, T. (2005). Az első hazai csődmodell újraszámítása neurális hálók segítségével. Közgazdasági Szemle, 52(2), 144-162. http://unipub.lib.uni-corvinus.hu/3465/1/Kszemle_CIKK_744.pdf

Virág, M. & Kristóf, T. (2006). Iparági rátákon alapuló csődelőrejelzés sokváltozós statisztikai módszerekkel. Vezetéstudomány, 37(1), 25-35. http://unipub.lib.uni-corvinus.hu/1048/1/vt_2006n1p25.pdf

Virág, M., Fiáth, A., Kristóf, T. & Varsányi, J. (2013). Pénzügyi elemzés, csődelőrejelzés, válságkezelés. Budapest: Kossuth Kiadó.

Virág, M. & Nyitrai, T. (2013). Application of support vector machines on the basis of the first Hungarian bankruptcy model. Society and Economy, 35(2), 227-248. https://doi.org/10.1556/socec.35.2013.2.6

Wang, Y. & campbell, M. (2010). Business Failure Prediction for Publicly Listed Companies in China. Journal of Business & Management, 16(1), 75-88. http://jbm.johogo.com/pdf/volume/1601/JBM-1601-04-full.pdf

Wang, G., Ma, J. & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033

Wilson, R. L. & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557. https://doi.org/10.1016/0167-9236(94)90024-8

Xiao, Z., Yang, X., Pang, Y. & Dang, X. (2012). The prediction for listed companies’ financial distress by using multiple prediction methods with rough set and Dempster–Shafer evidence theory. Knowledge-Based Systems, 26, 196-206. https://doi.org/10.1016/j.knosys.2011.08.001

Xu, X. & Wang, Y. (2009). Financial failure prediction using efficiency as a predictor. Expert Systems with Applications, 36(1), 366-373. https://doi.org/10.1016/j.eswa.2007.09.040

Youn, H. & Gu, Z. (2010). Predicting Korean lodging firm failures: An artificial neural network model along with a logistic regression model. International Journal of Hospitality Management, 29(1), 120-127. https://doi.org/10.1016/j.ijhm.2009.06.007

Zhao, Y., Li, J. & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, 9-16. https://doi.org/10.1016/j.eneco.2017.05.023

Zhou, L. (2013). Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods. Knowledge-Based Systems, 41, 16-25. https://doi.org/10.1016/j.knosys.2012.12.007

Zięba, M., Tomczak, S. K. & Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58, 93-101. https://doi.org/10.1016/j.eswa.2016.04.001

Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. https://doi.org/10.2307/2490859

Downloads

Megjelent

2022-01-16

Hogyan kell idézni

Ágoston, N. (2022). Külföldi csődelőrejelző módszerek szisztematikus irodalomelemzése. Vezetéstudomány Budapest Management Review, 53(1), 69–89. https://doi.org/10.14267/VEZTUD.2022.01.06

Folyóirat szám

Rovat

Tanulmányok