Külföldi csődelőrejelző módszerek szisztematikus irodalomelemzése
DOI:
https://doi.org/10.14267/VEZTUD.2022.01.06Keywords:
bankruptcy prediction, systematic literature review, insolvency, business failure, financial distressAbstract
Research on corporate insolvency, bankruptcy and financial distress comprises an intensive research genre with numerous practical methods. The study investigates the foreign recognized literature on corporate bankruptcy prediction using the method of systematic literature review. The objective of this research is twofold, firstly to examine the best-performing methods of corporate bankruptcy prediction and secondly to reveal the most common factors based on the reviewed research. Using three scientific databases, 105 articles from 1966 to 2017 were reviewed. The literature review compares six families of methods. The results show that the decision trees exceed the SVM and neural network method and the traditional statistical methods. Between instance-based methods and logistic regression as methods with medium accuracy, no clear ranking could be established. Examining the factors of bankruptcy, we concluded that market indicators used next to financial indicators do not lead on average to higher forecasting accuracy than models including only financial indicators.
Downloads
References
Abidali, A. F. & Harris, F. (1995). A methodology for predicting company failure in the construction industry. Construction Management and Economics, 13(3), 189- 196. https://doi.org/10.1080/01446199500000023
Ahn, H. & Kim, K. J. (2009). Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing, 9(2), 599-607. https://doi.org/10.1016/j.asoc.2008.08.002
Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O, Akinade, O. O. & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Altman, E. I., Eom, Y. H. & Kim, D. W. (1995). Failure prediction: evidence from Korea. Journal of International Financial Management & Accounting, 6(3), 230-249. https://doi.org/10.1111/j.1467-646x.1995.tb00058.x
Alfaro, E., García, N., Gámez, M. & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110-122. https://doi.org/10.1016/j.dss.2007.12.002
Anandarajan, M., Lee, P. & Anandarajan, A. (2001). Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks. Intelligent Systems in Accounting, Finance & Management, 10(2), 69-81. https://doi.org/10.1002/isaf.199
Appiah, K. O., Chizema, A., & Arthur, J. (2015). Predicting corporate failure: a systematic literature review of methodological issues. International Journal of Law and Management, 57(5), 461-485. http://dx.doi.org/10.1108/IJLMA-04-2014-0032
Aziz, A., Emanuel, D. C. & Lawson, G. H. (1988). Bankruptcy prediction ‐ An investigation of cash flow based models (1). Journal of Management Studies, 25(5), 419-437. https://doi.org/10.1111/j.1467-6486.1988.tb00708.x
Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. https://doi.org/10.1016/j.bar.2005.09.001
Baldwin, J. & Glezen, G. W. (1992). Bankruptcy prediction using quarterly financial statement data. Journal of Accounting, Auditing & Finance, 7(3), 269-285. https://doi.org/10.1177/0148558x9200700301
Barboza, F., Kimura, H. & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. https://doi.org/10.2307/2490171
Bellovary, J., Giacomino, D. & Akers, M. (2007). A review of bankruptcy prediction studies: 1930-present. Journal of Finance Education, 33. 1-42.
Berg, D. (2007). Bankruptcy prediction by generalized additive models. Applied Stochastic Models in Business and Industry, 23(2), 129-143. https://doi.org/10.1002/asmb.658
Beynon, M. J. & Peel, M. J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29(6), 561-576. https://doi.org/10.1016/s0305-0483(01)00045-7
Boritz, J. E., Kennedy, D. B. & Albuquerque, A. D. M. E. (1995). Predicting corporate failure using a neural network approach. Intelligent Systems in Accounting, Finance and Management, 4(2), 95-111. https://doi.org/10.1002/j.1099-1174.1995.tb00083.x
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and regression trees. California: Wadsworth.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/bf00058655
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Bruno, A. V. & Leidecker, J. K. (1988). Causes of new venture failure: 1960s vs. 1980s. Business Horizons, 31(6), 51-56. https://doi.org/10.1016/0007-6813(88)90024-9
Casey, C. & Bartczak, N. (1985.: Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 23(1), 384-401. https://doi.org/10.2307/2490926
Charitou, A., Neophytou, E. & Charalambous, C. (2004). Predicting corporate failure: empirical evidence for the UK. European Accounting Review, 13(3), 465-497. https://doi.org/10.1080/0963818042000216811
Chaudhuri, A. & De, K. (2011). Fuzzy support vector machine for bankruptcy prediction. Applied Soft Computing, 11(2), 2472-2486. https://doi.org/10.1080/0963818042000216811
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537-569. https://doi.org/10.1007/s10679-004-6279-6
Chen, W. S. & Du, Y. K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086. https://doi.org/10.1016/j.eswa.2008.03.020
Chen, M. Y. (2011a). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers & Mathematics with Applications, 62(12), 4514-4524. https://doi.org/10.1016/j.camwa.2011.10.030
Chen, M. Y. (2011b). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 38(9), 11261-11272. https://doi.org/10.1016/j.eswa.2011.02.173
Ciampi, F. (2015). Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms. Journal of Business Research, 68(5), 1012-1025. https://doi.org/10.1016/j.jbusres.2014.10.003
Coats, P. & Fant, L. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22(3), 142-155. https://doi.org/10.2307/3665934
Constand, L. R. & Yazdipour, R. (2011). Firm failure prediction models: a critique and a review of recent developments. In Yazdipour, R. (Ed.), Advances in Enterpreneurial Finance: With Applicantions from behavioral Finance and Economics (pp. 185-204). New York: Springer Science and Business Media. https://doi.org/10.1007/978-1-4419-7527-0_10
Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/bf00994018
Dewaelheyns, N. & Van Hulle, C. (2006). Corporate failure prediction modeling: Distorted by business groups’ internal capital markets? Journal of Business Finance & Accounting, 33(5‐6), 909-931. https://doi.org/10.1111/j.1468-5957.2006.00009.x
De Andrés, J., Lorca, P., de Cos Juez, F. J. & Sánchez-Lasheras, F. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multi- variate Adaptive Regression Splines (MARS). Expert Systems with Applications, 38(3), 1866-1875. https://doi.org/10.1016/j.eswa.2010.07.117
Delen, D., Kuzey, C. & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970-3983. https://doi.org/10.1016/j.eswa.2013.01.012
Dimitras, A. I., Slowinski, R., Susmaga, R. & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114(2), 263-280. https://doi.org/10.1016/s0377-2217(98)00255-0
Du Jardin, P. & Séverin, E. (2011). Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model. Decision Support Systems, 51(3), 701-711. https://doi.org/10.1016/j.dss.2011.04.001
Du Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Operational Research, 242(1), 286-303. https://doi.org/10.1016/j.ejor.2014.09.059
Duan, J. C., Sun, J. & Wang, T. (2012). Multiperiod corporate default prediction - A forward intensity approach. Journal of Econometrics, 170(1), 191-209. https://doi.org/10.1016/j.jeconom.2012.05.002
Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665. https://doi.org/10.1016/j.jfineco.2005.10.011
Dun and Bradstreet (1978). The Business Failure Record. New York: Dun and Bradstreet Inc.
Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7(2), 1477- 1493. https://doi.org/10.2307/2329929
Engelmann, B., Hayden, E., & Tasche, D. (2003). Measuring the discriminative power of rating systems. Discussion Paper, Series 2. Banking and financing Super- vision. Deutsche Bundesbank, Frankfurt. https://www.bundesbank.de/resource/blob/704150/b9fa10a16dfff-3c98842581253f6d141/mL/2003-10-01-dkp-01-data.pdf
Etemadi, H., Rostamy, A. A. A. & Dehkordi, H. F. (2009). A genetic programming model for bankruptcy prediction: Empirical evidence from Iran. Expert Systems with Applications, 36(2), 3199-3207. https://doi.org/10.1016/j.eswa.2008.01.012
Fan, A. & Palaniswami, M. (2000). Selecting bankruptcy predictors using a support vector machine approach. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, Vol. 6, (pp. 354-359). Piscataway: IEEE. https://doi.org/10.1109/ijcnn.2000.859421
Fedorova, E., Gilenko, E. & Dovzhenko, S. (2013). Bankruptcy prediction for Russian companies: Application of combined classifiers. Expert Systems with Applications, 40(18), 7285-7293. https://doi.org/10.1016/j.eswa.2013.07.032
Fletcher, D. & Goss, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information & Management, 24(3), 159-167. https://doi.org/10.1016/0378-7206(93)90064-z
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. International Conference on Machine Learning, 96, 148-156.
Frydman, H., Altman, E. I. & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40(1), 269-291. https://doi.org/10.1111/j.1540-6261.1985.tb04949.x
Geng, R., Bose, I. & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247. https://doi.org/10.1016/j.ejor.2014.08.016
Gentry, J. A., Newbold, P. & Whitford, D. T. (1985). Classifying bankrupt firms with funds flow components. Journal of Accounting Research, 23(1), 146-160. https://doi.org/10.2307/2490911
Gombola, M. J., Haskins, M. E., Ketz, J. E. & Williams, D. D. (1987). Cash flow in bankruptcy prediction. Financial Management, 16(4), 55-65. https://doi.org/10.2307/3666109
Greenwald, D. (1973). The McGraw-Hill Dictionary of Modern Economics: A Handbook of Terms and Organizations. New York: McGraw-Hill Book Company.
Grice, J. S. & Ingram, R. W. (2001). Tests of the generalizability of Altman’s bankruptcy prediction model. Journal of Business Research, 54(1), 53-61. https://doi.org/10.1016/s0148-2963(00)00126-0
Hámori, G. (2001). A CHAID alapú döntési fák jellemzői. Statisztikai Szemle, 79(8), 703-710. https://www.ksh.hu/statszemle_archive/2001/2001_08/2001_08_703.pdf
Hernandez Tinoco, M. & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394-419. https://doi.org/10.1016/j.irfa.2013.02.013
Hertz, J., Krogh, A. & Palmer, R. (1991). Introduction to the theory of neural computing. New York: Addison Wesley. Hillegeist, S. A., Keating, E. K., Cram, D. P. & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5-34. https://doi.org/10.1023/b:rast.0000013627.90884.b7
Horta, I. M. & Camanho, A. S. (2013). Company failure prediction in the construction industry. Expert Systems with Applications, 40(16), 6253-6257. https://doi.org/10.1016/j.eswa.2013.05.045
Hu, Y-C. & Tseng, F-M. (2007). Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing, 70, 2959-2968. https://doi.org/10.1016/j.neucom.2006.10.111
Hua, Z., Wang, Y., Xu, X., Zhang, B. & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434-440. https://doi.org/10.1016/j.eswa.2006.05.006
Huang, S. M., Tsai, C. F., Yen, D. C. & Cheng, Y. L. (2008). A hybrid financial analysis model for business failure prediction. Expert Systems with Applications, 35(3), 1034-1040. https://doi.org/10.1016/j.eswa.2007.08.040
Johnsen, T. & Melicher, R. W. (1994). Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models. Journal of Economics and Business, 46(4), 269-286. https://doi.org/10.1016/0148-6195(94)90038-8
Jones, S. & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. The Accounting Review, 79(4), 1011-1038. https://doi.org/10.2308/accr.2004.79.4.1011
Jones, S. & Hensher, D. A. (2007). Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes. The British Accounting Review, 39(1), 89-107. https://doi.org/10.1016/j.bar.2006.12.003
Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society: Series C (Applied Statis- tics), 29(2), 119-127. https://doi.org/10.2307/2986296
Kim, M. J. & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373-3379. https://doi.org/10.1016/j.eswa.2009.10.012
Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal, 31(3), 441-468. https://doi.org/10.1080/02642060802712848
Korol, T. (2013). Early warning models against bankruptcy risk for Central European and Latin American enterprises. Economic Modelling, 31, 22-30. https://doi.org/10.1016/j.econmod.2012.11.017
Kristóf, T. (2004). Mesterséges intelligencia a csődelőrejelzésben. Jövőtanulmányok, 21.
Kristóf, T. (2005). Szervezetek jövőbeni fennmaradása különböző megközelítésekben. Vezetéstudomány, 36(9), 15-23. https://doi.org/10.14267/VEZTUD.2005.09.02
Kristóf, T. (2018). A case-based reasoning alkalmazása a hazai mikrovállalkozások csődelőrejelzésére. Statisztikai Szemle, 96(11-12), 1109-1128. https://doi.org/10.20311/stat2018.11-12.hu1109
Kristóf, T. & Virág, M. (2019). A csődelőrejelzés fejlődéstörténete Magyarországon. Vezetéstudomány, 50(12), 62-73. https://doi.org/10.14267/veztud.2019.12.06
Kristóf, T. & Virág, M. (2020). A comprehensive review of corporate bankruptcy prediction in Hungary. Journal of Risk and Financial Management, 13(2), 35 https://doi.org/10.3390/jrfm13020035
Laitinen, E. K. (1992). Prediction of failure of a newly founded firm. Journal of Business Venturing, 7(4), 323-340. https://doi.org/10.1016/0883-9026(92)90005-c
Laitinen, E. K. (1993). Financial predictors for different phases of the failure process. Omega, 21(2), 215-228. https://doi.org/10.1016/0305-0483(93)90054-o
Lau, A. H. L. (1987). A five-state financial distress prediction model. Journal of Accounting Research, 25(1), 127-138. https://doi.org/10.2307/2491262
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Lee, K., Booth, D. & Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications, 29(1), 1-16. https://doi.org/10.1016/j.eswa.2005.01.004
Lee, S. & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40(8), 2941-2946. https://doi.org/10.1016/j.eswa.2012.12.009
Leshno, M. & Spector, Y. (1996). Neural network prediction analysis: The bankruptcy case. Neurocomputing, 10(2), 125-147. https://doi.org/10.1016/0925-2312(94)00060-3
Li, H. & Sun, J. (2008). Ranking-order case-based reasoning for financial distress prediction. Knowledge-based Systems, 21(8), 868-878. https://doi.org/10.1016/j.knosys.2008.03.047
Li, H. & Sun, J. (2009). Majority voting combination of multiple case-based reasoning for financial distress prediction. Expert Systems with Applications, 36(3), 4363-4373. https://doi.org/10.1016/j.eswa.2008.05.019
Li, H. & Sun, J. (2012). Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples–Evidence from the Chinese hotel industry. Tourism Management, 33(3), 622-634. https://doi.org/10.1016/j.tourman.2011.07.004
Liang, D., Lu, C. C., Tsai, C. F. & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572. https://doi.org/10.1016/j.ejor.2016.01.012
Lin, T. H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16-18), 3507-3516. https://doi.org/10.1016/j.neucom.2009.02.018
Lin, F., Liang, D., Yeh, C. C. & Huang, J. C. (2014). Novel feature selection methods to financial distress prediction. Expert Systems with Applications, 41(5), 2472-2483. https://doi.org/10.1016/j.eswa.2013.09.047
Liu, D., Li, T. & Liang, D. (2014). Incorporating logistic regression to decision-theoretic rough sets for classifications. International Journal of Approximate Reasoning, 55(1), 197-210. https://doi.org/10.1016/j.ijar.2013.02.013
Luoma, M. & Laitinen, E. K. (1991). Survival analysis as a tool for company failure prediction. Omega, 19(6), 673-678. https://doi.org/10.1016/0305-0483(91)90015-l
Lussier, R. N. (1995). A nonfinancial business success versus failure prediction model for young firms. Journal of Small Business Management, 33(1), 8-20.
Mayew, W. J., Sethuraman, M. & Venkatachalam, M. (2015). MD&A disclosure and the firm’s ability to continue as a going concern. The Accounting Review, 90(4), 1621-1651. https://doi.org/10.2308/accr-50983
McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory. Intelligent Systems in Accounting, Finance & Management 9(3), 159-173. https://doi.org/10.1002/1099-1174(200009)9:3%3C159::aid-isaf184%3E3.0.co;2-c
McKee, T. E. & Greenstein, M. (2000). Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of Forecasting, 19(3), 219-230. https://doi.org/10.1002/(sici)1099-131x(200004)19:3%3C219::aid-for752%3E3.0.co;2-j
McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signalling rates. Journal of Forecasting, 22(8), 569-586. https://doi.org/10.1002/for.875
Mensah, Y. M. (1983). The differential bankruptcy predictive ability of specific price level adjustments: some empirical evidence. Accounting Review, 58(2), 228- 246. https://www.jstor.org/stable/246832
Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 22(1), 380-395. https://doi.org/10.2307/2490719
Min, J. H. & Jeong, C. (2009). A binary classification method for bankruptcy prediction. Expert Systems with Applications, 36(3), 5256-5263. https://doi.org/10.1016/j.eswa.2008.06.073
Moher, D., Liberati, A ., Tetzlaff, J. & Altman, D. G. (2009). The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta Analyses: The PRISMA Statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097
Mossman, C. E., Bell, G. G., Swartz, L. M. & Turtle, H. (1998). An empirical comparison of bankruptcy models. Financial Review, 33(2), 35-54. https://doi.org/10.1111/j.1540-6288.1998.tb01367.x
Murthy, S. K., Kasif, S., Salzberg, S. & Beigel, R. (1993). OC1: A randomized algorithm for building oblique decision trees. Proceedings of AAAI, 93, 322-327.
Nam, J. H. & Jinn, T. (2000). Bankruptcy prediction: Evidence from Korean listed companies during the IMF crisis. Journal of International Financial Management & Accounting, 11(3), 178-197. https://doi.org/10.1111/1467-646x.00061
Nam, C. W., Kim, T. S., Park, N. J. & Lee, H. K. (2008). Bankruptcy prediction using a discrete time duration model incorporating temporal and macroeconomic dependencies. Journal of Forecasting, 27(6), 493- 506. https://doi.org/10.1002/for.985
Neophytou, E. & Mar Molinero, C. (2004). Predicting corporate failure in the UK: a multidimensional scaling approach. Journal of Business Finance & Accounting, 31(5‐6), 677-710. https://doi.org/10.1111/j.0306-686x.2004.00553.x
Nicolas, J. & Toval, A. (2009). On the generation of requirements specifications from software engineering models: a systematic literature review. Information and Software Technology, 51, 1291-1307. https://doi.org/10.1016/j.infsof.2009.04.001
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://doi.org/10.1038/nbt1206-1565
Nyitrai, T. (2014). Validációs eljárások a csődelőrejelző modellek teljesítményének megítélésében. Statisztikai Szemle, 92(4), 357-377.
Nyitrai, T. (2015). Hazai vállalkozások csődjének előrejelzése a csődeseményt megelőző egy, két, illetve három évvel korábbi pénzügyi beszámolók adatai alapján. Vezetéstudomány, 46(5), 55-65. https://doi.org/10.14267/veztud.2015.05.06
Nyitrai, T. (2017). Stock és flow típusú számviteli adatok alkalmazása a csődelőrejelző modellekben. Vezetéstudomány, 48(8-9), 68-77. https://doi.org/10.14267/veztud.2017.09.07
Nyitrai, T. (2019). Dynamization of bankruptcy models via indicator variables. Benchmarking: An International Journal, 26(1), 317-332. https://doi.org/10.1108/bij-03-2017-0052
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. https://doi.org/10.2307/2490395
Oravecz, B. (2007). Credit scoring modellek és teljesítményük értékelése. Hitelintézeti Szemle, 6(6), 607-627. Peel, M. J. & Peel, D. A. (1987). Some further empirical evidence on predicting private company failure. Accounting and Business Research, 18(69), 57-66. https://doi.org/10.1080/00014788.1987.9729348
Platt, H. D. & Platt, M. B. (1990). Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance & Accounting, 17(1), 31-51. https://doi.org/10.1111/j.1468-5957.1990.tb00548.x
Platt, H. D. & Platt, M. B. (1991). A note on the use of industry-relative ratios in bankruptcy prediction. Journal of Banking & Finance, 15(6), 1183-1194. https://doi.org/10.1016/0378-4266(91)90057-s
Platt, H. D., Platt, M. B. & Pedersen, J. G. (1994). Bankruptcy discrimination with real variables. Journal of Business Finance & Accounting, 21(4), 491-510. https://doi.org/10.1111/j.1468-5957.1994.tb00332.x
Pompe, P. P. M. & Feelders, A. J. (1997). Using machine learning, neural networks, and statistics to predict corporate bankruptcy. Computer‐Aided Civil and Infrastructure Engineering, 12(4), 267-276. https://doi.org/10.1111/0885-9507.00062
Pompe, P. P. & Bilderbeek, J. (2005). The prediction of bankruptcy of small-and medium-sized industrial firms. Journal of Business Venturing, 20(6), 847-868. https://doi.org/10.1016/j.jbusvent.2004.07.003
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. https://doi.org/10.1007/bf00116251
Quinlan, J. R. (1993). C4.5: Programming for machine learning. Morgan Kaufmann Publishers, San Mateo, California.
Quinlan, J. R. (1997). C5.0 and see 5: Illustrative examples. RuleQuest Research.
Rafiei, F. M., Manzari, S. M. & Bostanian, S. (2011). Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 38(8), 10210-10217. https://doi.org/10.1016/j.eswa.2011.02.082
Ratting, A. (2015). Fizetésképtelenség-előrejelzési megközelítések. Társadalom és Gazdaság, 7(3), 53-73. https://doi.org/10.21637/gt.2015.3.04
Ravi Kumar, P. & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043
Russell, S. & Norvig, P. (2005). Mesterséges intelligencia modern megközelítésben. Budapest: Panem Könyvkiadó.
Ryu, Y. U. & Yue, W. T. (2005). Firm bankruptcy prediction: experimental comparison of isotonic separation and other classification approaches. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(5), 727-737. https://doi.org/10.1109/tsmca.2005.843393
Sajtos, L. & Mitev, A. (2007). SPSS kutatási és adatelemzési kézikönyv. Budapest: Alinea Kiadó.
Sandin, A. R. & Porporato, M. (2007). Corporate bankruptcy prediction models applied to emerging economies. International Journal of Commerce and Management, 17(4), 295 – 311. https://doi.org/10.1108/10569210710844372
Scherger, V., Terceño, A. & Vigier, H. (2019). A systematic overview of the prediction of business failure. International Journal of Technology, Policy and Management, 19(2), 196-211. https://doi.org/10.1504/ijtpm.2019.100601
Sharma S. & Mahajan, V. (1980). Early Warning Indicators of Business Failure. Journal of Marketing, 44(4), 80-89. https://doi.org/10.1177/002224298004400412
Shetty, U., Pakkala, T. P. M. & Mallikarjunappa, T. (2012). A modified formulation of DEA to assess bankruptcy: An application to IT/ITES companies in India. Expert Systems with Applications, 39(2), 1988-1997. https://doi.org/10.1016/j.eswa.2011.08.043
Shi, Y. & Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A Systematic literature review. Intangible Capital, 15(2), 114-127. https://doi.org/10.3926/ic.1354
Shin, K. S. & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328. https://doi.org/10.1016/s0957-4174(02)00051-9
Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127- 135. https://doi.org/10.1016/j.eswa.2004.08.009
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1), 101-124. https://doi.org/10.1086/209665
Sun, J. & Li, H. (2008). Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 35(3), 818-827. https://doi.org/10.1016/j.eswa.2007.07.045
Sun, J. & Li, H. (2009). Financial distress early warning based on group decision making. Computers & Operations Research, 36(3), 885-906. https://doi.org/10.1016/j.cor.2007.11.005
Sun, J., Jia, M. Y. & Li, H. (2011). AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert Systems with Applications, 38(8), 9305-9312. https://doi.org/10.1016/j.eswa.2011.01.042
Szabadosné, Németh Zs. & Dávid, L. (2005). A kis- és középvállalati szegmens mulasztási valószínűségének előrejelzése magyarországi környezetben. Hitelintézeti Szemle, 4(3), 39-58.
Székelyi, M. & Barna, I. (2008). Túlélő készlet az SPSS- hez. Budapest: Typotex.
Takahashi, K., Kurokawa, Y. & Watase, K. (1984). Corporate bankruptcy prediction in Japan. Journal of Banking & Finance, 8(2), 229-247. https://doi.org/10.1016/0378-4266(84)90005-0
Teng, H. S. S., Bhatia, G. S. & Anwar, S. (2011). A success versus failure prediction model for small businesses in Singapore. American Journal of Business, 26(1), 50- 64. https://doi.org/10.1108/19355181111124106
Theodossiou, P. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business Finance & Accounting, 18(5), 697-720. https://doi.org/10.1111/j.1468-5957.1991.tb00233.x
Theodossiou, P. T. (1993). Predicting shifts in the mean of a multivariate time series process: an application in predicting business failures. Journal of the American Statistical Association, 88(422), 441-449. https://doi.org/10.1080/01621459.1993.10476294
Tian, S., Yu, Y. & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100. https://doi.org/10.1016/j.jbankfin.2014.12.003
Tranfield, D., Denyer, D. & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375
Tsukuda, J. & Baba, S. I. (1994). Predicting Japanese corporate bankruptcy in terms of financial data using neural network. Computers & Industrial Engineering, 27(1-4), 445-448. https://doi.org/10.1016/0360-8352(94)90330-1
Virág, M. (2001). Pénzügyi elemzés csődelőrejelzés. Budapest: Kossuth Kiadó.
Virág, M. (2004). A csődmodellek jellegzetességei és története. Vezetéstudomány, 35(10), 24-32. http://unipub.lib.uni-corvinus.hu/4551/1/VT_2004n10p24.pdf
Virág, M. & Dóbé, S. (2005). A hazai csődmodell-család alkalmazása ágazati centroidokra. Vezetéstudomány, 36(4), 45-54. https://doi.org/10.14267/VEZTUD.2005.04.05
Virág, M. & Kristóf, T. (2005). Az első hazai csődmodell újraszámítása neurális hálók segítségével. Közgazdasági Szemle, 52(2), 144-162. http://unipub.lib.uni-corvinus.hu/3465/1/Kszemle_CIKK_744.pdf
Virág, M. & Kristóf, T. (2006). Iparági rátákon alapuló csődelőrejelzés sokváltozós statisztikai módszerekkel. Vezetéstudomány, 37(1), 25-35. http://unipub.lib.uni-corvinus.hu/1048/1/vt_2006n1p25.pdf
Virág, M., Fiáth, A., Kristóf, T. & Varsányi, J. (2013). Pénzügyi elemzés, csődelőrejelzés, válságkezelés. Budapest: Kossuth Kiadó.
Virág, M. & Nyitrai, T. (2013). Application of support vector machines on the basis of the first Hungarian bankruptcy model. Society and Economy, 35(2), 227-248. https://doi.org/10.1556/socec.35.2013.2.6
Wang, Y. & campbell, M. (2010). Business Failure Prediction for Publicly Listed Companies in China. Journal of Business & Management, 16(1), 75-88. http://jbm.johogo.com/pdf/volume/1601/JBM-1601-04-full.pdf
Wang, G., Ma, J. & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353-2361. https://doi.org/10.1016/j.eswa.2013.09.033
Wilson, R. L. & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557. https://doi.org/10.1016/0167-9236(94)90024-8
Xiao, Z., Yang, X., Pang, Y. & Dang, X. (2012). The prediction for listed companies’ financial distress by using multiple prediction methods with rough set and Dempster–Shafer evidence theory. Knowledge-Based Systems, 26, 196-206. https://doi.org/10.1016/j.knosys.2011.08.001
Xu, X. & Wang, Y. (2009). Financial failure prediction using efficiency as a predictor. Expert Systems with Applications, 36(1), 366-373. https://doi.org/10.1016/j.eswa.2007.09.040
Youn, H. & Gu, Z. (2010). Predicting Korean lodging firm failures: An artificial neural network model along with a logistic regression model. International Journal of Hospitality Management, 29(1), 120-127. https://doi.org/10.1016/j.ijhm.2009.06.007
Zhao, Y., Li, J. & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, 9-16. https://doi.org/10.1016/j.eneco.2017.05.023
Zhou, L. (2013). Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods. Knowledge-Based Systems, 41, 16-25. https://doi.org/10.1016/j.knosys.2012.12.007
Zięba, M., Tomczak, S. K. & Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58, 93-101. https://doi.org/10.1016/j.eswa.2016.04.001
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. https://doi.org/10.2307/2490859
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vezetéstudomány / Budapest Management Review
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors assign copyright to Vezetéstudomány / Budapest Management Review. Authors are responsible for permission to reproduce copyright material from other sources.