A relatív hatékonyságvizsgálat (DEA) alkalmazása üzleti szimulációs játékban nyújtott teljesítmény értékelésére

Authors

DOI:

https://doi.org/10.14267/VEZTUD.2020.KSZ.08

Keywords:

business simulation game, performance evaluation, operations management, data envelopment analysis (DEA), linear programming

Abstract

Evaluating the performance of participants in a business simulation game is a particularly difficult task because of the many subjective evaluation criteria and the difficulty of aggregating quantitative information. The purpose of this article is to show how data envelopment analysis (DEA) can be used to comprehensively assess the performance of participants in simulation games. The paper presents the performance evaluation of master students participating in a production simulation game using a constant return to scale, input-oriented radial DEA model. Taking into account the specific aspects of the evaluation, weight limits are applied to ensure that all relevant evaluation criteria are included in the analysis. The presented method could open up a new way of evaluating the performance of business simulation game participants, as well as indicates a new application area of DEA that has not been discovered yet.

Downloads

Download data is not yet available.

Author Biographies

Alexandra Tamás, Budapest University of Technology and Economics

PhD student

Tamás Koltai, Budapest University of Technology and Economics

Full Professor

References

Adams, P.C. (1998). Teaching and learning with SimCity 2000. Journal of Geography, 97(2), 47-55. https://doi.org/10.1080/00221349808978827

Agabo-Mateos, F. L., Escobar Pérez, B., & Lobo Gallardo, A. (2014). Measuring efficiency of the youth hostel sector in Andalusia using an adapted DEA model. In Cultura, desarrollo y nuevas tecnologías: VII jornadas de investigación en turismo (2014) (pp. 185-210). Sevilla: Universidad de Sevilla. Retrieved from https://idus.us.es/handle/11441/53058

Ammar, S., & Wright, R. (1999). Experiential learning activities in operations management. International Transactions in Operational Research, 6(2), 183-197. https://doi.org/10.1016/s0969-6016(98)00022-7

Anderson, J.R. (2005). The Relationship Between Student Perceptions of Team Dynamics and Simulation Game Outcomes: An Individual-Level Analysis. Journal of Education for Business, 81(2), 85-90. https://doi.org/10.3200/joeb.81.2.85-90

Avkiran, N.K. (2001). Investigating Technical and Scale Efficiencies of Australian Universities through Data Envelopment Analysis. Socio-Economic Planning Sciences, 35(1), 57-80. https://doi.org/10.1016/s0038-0121(00)00010-0

Banker, R.D., Charnes, A., & Cooper, W.W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078

Belanich, J., Sibley, D. E., & Orvis, K. L. (2004). Instructional characteristics and motivational features of a PC-based game (No. ARI-RR-1822). Alexandria: Army Research Institute for the Behavioral and Social Sciences. https://doi.org/10.21236/ada422808

Ben-Zvi, T. (2010). The efficacy of business simulation games in creating Decision Support Systems: An experimental investigation. Decision Support Systems, 49(1), 61-69. https://doi.org/10.1016/j.dss.2010.01.002

Bóna, K., Kovács, G., & Lénárt, B. (2009). Egy ellátási lánc szimulációs játék (SCSG) modellje és az egyetemi oktatásban végrehajtott tesztelés gyakorlati tapasztalatai. In Innováció és fenntartható felszíni közlekedés konferencia 2009 (Online-Internet) (pp. 2-4), 2009.09.03-2009.09.05, Budapest.

Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8

Charnes, A., Cooper, W. W., & Rhodes, E. (1981). Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through. Management Science, 27(6), 668-697. https://doi.org/10.1287/mnsc.27.6.668

Cohen, K.J. & Rhenman, E. (1961). The Role of Management Games in Education and Research. Management Science, 7(2), 131-166. https://doi.org/10.1287/mnsc.7.2.131

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Wiesbaden: Springer.

Dénes, R.V., Kecskés, J., Koltai, T., & Dénes, Z. (2017). The Application of Data Envelopment Analysis in Healthcare Performance Evaluation of Rehabilitation Departments in Hungary. Quality Innovation Prosperity, 21(3), 127-142. https://doi.org/10.12776/qip.v21i3.920

Deshpande, A. A., & Huang, S. H. (2011). Simulation games in engineering education: A state‐of‐theart review. Computer Applications in Engineering Education, 19(3), 399-410. https://doi.org/10.1002/cae.20323

Fancello, G., Uccheddu, B., & Fadda, P. (2014). Data Envelopment Analysis (D.E.A.) for Urban Road System Performance Assessment. Procedia – Social and Behavioral Sciences, 111, 780-789. https://doi.org/10.1016/j.sbspro.2014.01.112

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. https://doi.org/10.2307/2343100

Fukuyama, H., & Matousek, R. (2017). Modelling bank performance: A network DEA approach. European Journal of Operational Research, 259(2), 721-732. https://doi.org/10.1016/j.ejor.2016.10.044

Garard, D. L., Lippert, L., Hunt, S. K., & Paynton, S. T. (1998). Alternatives to traditional instruction: Using games and simulations to increase student learning and motivation. Communication Research Reports, 15(1), 36-44. https://doi.org/10.1080/08824099809362095

Goodwin, J. S., & Franklin, S. G. (1994). The beer distribution game: using simulation to teach systems thinking. Journal of Management Development, 13(8), 7-15. https://doi.org/10.1108/02621719410071937

Gredler, M. E. (2004). Games and simulations and their relationships to learning. In Jonassen, D.H. (Ed.), Handbook of research for educational communications and technology (2nd ed., pp. 571-582). Mahwah, NJ: Lawrence Erlbaum Associates.

Hand, H. H., & Sims, H.P. (1975). Statistical evaluation of complex gaming performance. Management Science, 21(6), 708-717. https://doi.org/10.1287/mnsc.21.6.708

Iraizoz, B., Rapun, M., & Zabaleta, I. (2003). Assessing the technical efficiency of horticultural production in Navarra, Spain. Agricultural Systems, 78(3), 387-403. https://doi.org/10.1016/s0308-521x(03)00039-8

Johnes, J. (2006). Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review, 25(3), 273-288. https://doi.org/10.1016/j.econedurev.2005.02.005

Kárpátiné Daróczi, J., Vágány, J., & Fenyvesi, É. (2016). Fejlődünk, hogy fejlődhessünk? – avagy milyen önképzési módszereket részesítenek előnyben a mikro- és kisvállalkozások vezetői napjainkban Magyarországon? Vezetéstudomány, 47(12), 72-82. https://doi.org/10.14267/VEZTUD.2016.12.07

Koltai, T., Lozano, S., Uzonyi-Kecskés, J., & Moreno, P. (2017). Evaluation of the results of a production simulation game using a dynamic DEA approach. Computers & Industrial Engineering, 105(March), 1-11. https://doi.org/10.1016/j.cie.2016.12.048

Koltai, T., & Uzonyi-Kecskés, J. (2017a). Evaluation of the results of a production simulation game with different DEA models. In Management and Organization: Concepts, Tools and Applications (pp. 109-120). Harlow: Pearson. https://doi.org/10.18515/dbem.m2017.n02.ch09

Koltai, T., & Uzonyi-Kecskés, J. (2017b). The comparison of Data Envelopment Analysis (DEA) and financial analysis results in a production simulation game. Acta Polytechnica Hungarica, 14(4), 167-185. https://doi.org/10.18515/dbem.m2017.n02.ch09

Kovács, Z. (2010). Egy ellátási lánc szimulációjának tapasztalatai. Vezetéstudomány, 41(10), 53-61.

Kovács, Z. (2011). Ellátási láncok irányítási algoritmusai a sörjáték példáján. Vezetéstudomány, 42(11), 40-48. Kovács, Z. (2012). The key to competitiveness: Forecast. Acta Oeconomica, 62(4), 505-518. https://doi.org/10.1556/aoecon.62.2012.4.5

Lean, J., Moizer, J., Towler, M., & Abbey, C. (2006). Simulations and games: Use and barriers in higher education. Active Learning in Higher Education, 7(3), 227-242. https://doi.org/10.1177/1469787406069056

Lewis, M.A. & Maylor, H.R. (2007). Game playing and operations management education. International Journal of Production Economics, 105(1), 134-149. https://doi.org/10.1016/j.ijpe.2006.02.009

Lieberman, D. A., & Linn, M. C. (1991). Learning to learn revisited: Computers and the development of self-directed learning skills. Journal of Research on Computing in Education, 23(3), 373-395. https://doi.org/10.1080/08886504.1991.10781968

Lim, H., & Shumway, C. R. (1992). Profit maximization, returns to scale, and measurement error. Review of Economics and Statistics, 74(3), 430-38. https://doi.org/10.2307/2109487

Liu, J.S., Lu, L.Y.Y., Lu, W., & Lin, B.J.Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004

Maradin, D., Drazenovic, B. O., & Benkovic, S. (2018). Performance evaluation of banking sector by using DEA method. In Ribeiro, H., Naletina, D., & Lorga da Silva, A. (eds.), Economic and Social Development 35 th International Scientific Conference on Economic and Social Development – „Sustainability from an Economic and Social Perspective” Book of Proceedings (pp. 684-690). Lisbon: Varazdin Development and Entrepreneurship Agency.

Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewable and Sustainable Energy Reviews, 70(April), 1298-1322. https://doi.org/10.1016/j.rser.2016.12.030

Moreno, R., & Mayer, R.E. (2000). Engaging students in active learning: The case for personalized multimedia messages. Journal of Educational Psychology, 92(4), 724-733. https://doi.org/10.1037//0022-0663.92.4.724

Nunamaker, T.R. (1983). Measuring Routine Nursing Service Efficiency: A Comparison of Cost Per Patient Day and Data Envelopment Analysis Models. Health Services Research, 18(2), 183-208.

Ofori-Sasu, D., Abor, J. Y., & Mensah, L. (2019). Funding structure and technical efficiency: A data envelopment analysis (DEA) approach for banks in Ghana. International Journal of Managerial Finance, 15(4), 425-443. https://doi.org/10.1108/ijmf-01-2018-0003

O’Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes: Evidence from the computer games literature. The Cirriculum Journal, 16(4), 455-474. https://doi.org/10.1080/09585170500384529

Parasuraman, A. (1980). Evaluation of simulation games; a critical look at past efforts and future needs. Experiential Learning Enters the Eighties, 7, 192-194. Retrieved from https://absel-ojs-ttu.tdl.org/absel/index.php/absel/issue/view/7

Pasin, F., & Giroux, H. (2011). The Impact of a Simulation Game on Operations Management Education. Computers & Education, 57(1), 1240-1254. https://doi.org/10.1016/j.compedu.2010.12.006

Peters, V.A.M., & Vissers, G.A.N. (2004). A Simple Classification Model for Debriefing Simulation Games. Simulation & Gaming, 32(1), 70-84. https://doi.org/10.1177/1046878103253719

Rahnama, A., Yaghoubi, M., & Khaksar Astaneh, H. (2019). Evaluating the Relative Efficiency of Iran’s Tourism Industry: A Non-Parametric Approach. Iranian Economic Review, 23(2), 417-435. https:doi.org/10.22059/IER.2019.70292

Ray, S.C. (1991). Resource use efficiency in public schools — a study of Connecticut data. Management Science, 37(12), 1620–1628. https://doi.org/10.1287/mnsc.37.12.1620

Riis J.O., Smeds R., Johansen J., & Mikkelsen H. (1998). Games for organizational learning in production management. In Okino, N., Tamura, H., & Fujii, S. (eds.), Advances in Production Management Systems. IFIP — The International Federation for Information Processing (pp. 327-338). Boston, MA.: Springer. https://doi.org/10.1007/978-0-387-35304-3_29

Roll, Y., & Hayuth, Y. E. H. U. D. A. (1993). Port performance comparison applying data envelopment analysis (DEA). Maritime Policy and Management, 20(2), 153-161. https://doi.org/10.1080/03088839300000025

Rosa, A.D., & Vianello, M. (2014). On the Effectiveness of a Simulated Learning Environment. Procedia – Social and Behavioral Sciences, 171, 1065-1074. https://doi.org/10.1016/j.sbspro.2015.01.267

Schefczyk, M. (1993). Operational performance of airlines: An extension of traditional measurement paradigms. Strategic Management Journal, 14(4), 301-317. https://doi.org/10.1002/smj.4250140406

Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management Science, 45(9), 1270-1288. https://doi.org/10.1287/mnsc.45.9.1270

Sherman, H.D., & Gold, F. (1985). Bank Branch Operating Efficiency. Journal of Banking and Finance, 9(2), 297-315. https://doi.org/10.1016/0378-4266(85)90025-1

Vörösmarty, G., & Dobos, I. (2014). Fenntarthatósági szempontok beépítése a beszállító értékelésébe a DEA/ CI összetett indikátorok módszere alkalmazásával. Vezetéstudomány, 45(3), 62-70.

Vörösmarty, G., & Dobos, I. (2019). Supplier Evaluation with Environmental Aspects and Common DEA Weights. Periodica Polytechnica Social and Management Sciences, 27(1), 17-25. https://doi.org/10.3311/ppso.11814

Tamás, A., & Koltai, T. (2018). Evaluation of decision making of teams in business simulation games using DEA. In European, Operations Management Association (eds.), 25th Annual EurOMA Conference. To Serve, To Produce and to Servitize in the Era of Networks, Big Data and Analytics (pp. 1-10). Budapest: EOMA.

Tiwari, S.R., Nafees, L. & Krishnan, O. (2014). Simulation as a pedagogical tool: Measurement of impact on perceived effective learning. The International Journal of Management, 12(3), 260-270. https://doi.org/10.1016/j.ijme.2014.06.006

Zhang, Z., Han, S., & Takubo, M. (2012). Data Envelopment Analysis with application to a business simulation game. In The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems (pp. 1978-1981). Kobe: IEEE. https://doi.org/10.1109/SCIS-ISIS.2012.6505245

Zhang, Z., & Han, S. (2014). Growth potential analysis with application to a business simulation game by DEA. In 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS) (pp. 879-882). Kitakyushu: IEEE. https://doi.org/10.1109/SCIS-ISIS.2014.7044809

Downloads

Published

2020-12-09

How to Cite

Tamás, A., & Koltai, T. (2020). A relatív hatékonyságvizsgálat (DEA) alkalmazása üzleti szimulációs játékban nyújtott teljesítmény értékelésére. Vezetéstudomány Budapest Management Review, 51(KSZ), 85–100. https://doi.org/10.14267/VEZTUD.2020.KSZ.08

Issue

Section

Studies and Articles