Miről írnak a budapesti fine dining éttermek vendégei? Éttermi vendégvélemények témamodellezése neurális témamodellel

Szerzők

  • Mátyás Hinek Budapesti Gazdaságtudományi Egyetem

DOI:

https://doi.org/10.14267/TURBULL.2025v25n1.2

Kulcsszavak:

neurális témamodellezés, éttermi vélemények, fine dining, BERTopic

Absztrakt

A tanulmány a budapesti fine dining éttermek szöveges vendégértékeléseinek témáit elemzi a BERTopic, egy neurális témamodellezési módszer, segítségével. A tanulmány 10.962 angol nyelvű, a Tripadvisorról származó, 2007 és 2024 márciusa között gyűjtött értékelést elemez. A hagyományos témamodellezési módszereknek korlátai vannak, különösen rövid szövegek esetében. A BERTopic a Sentence-BERT beágyazásokat kihasználva szemantikailag koherensebb témaazonosítást kínál. A vendégértékelések témamodellezése során 40 témát azonosítottunk, amelyek az éttermi szolgáltatás szinte minden aspektusát lefedik. Vizsgáltuk a számszerű vendégértékelések és az azonosított témák kapcsolatát, valamint azt, hogy az idő múlásával egyes témák aránya hogyan változott a véleményekben. A kutatás arra a következtetésre jutott, hogy bár a BERTopicnak vannak korlátai, ígéretesnek tűnik nagy mennyiségű szöveges adat elemzésében.

Hivatkozások

ABUZAYED, A. – AL-KHALIFA, H. (2021): BERT for Arabic Topic Modeling: An Experimental Study on BERTopic Technique. Procedia Computer Science. 189. pp. 191–194. https://doi. org/10.1016/j.procs.2021.05.096

AKTAS-POLAT, S. (2022): Analysis of Fine Dining Restaurant Reviews for Perception of Customers Restaurant Service Quality. Journal of Tourism and Gastronomy Studies. https://doi. org/10.21325/jotags.2022.974

ALAMSYAH, A. – GIRAWAN, N. D. (2023): Improving Clothing Product Quality and Reducing Waste Based on Consumer Review Using RoBERTa and BERTopic Language Model. Big Data and Cognitive Computing. 7(4). 168. https://doi.org/10.3390/bdcc7040168

ALBALAWI, R. – YEAP, T. H. – BENYOUCEF, M. (2020): Using Topic Modeling Methods for Short-Text Data: A Comparative Analysis. Frontiers in Artificial Intelligence. 3. https://doi. org/10.3389/frai.2020.00042

BLEI, D. M. (2012): Probabilistic topic models. Communications of the ACM. 55(4). pp. 77–84. https://doi.org/10.1145/2133806.2133826

BLEI, D. M. – NG, A. Y. – JORDAN, M. I. (2003): Latent Dirichlet allocation. Journal of Machine Learning Research. 3(4-5). https://doi. org/10.1016/b978-0-12-411519-4.00006-9

CHANG, J. – GERRISH, S. – WANG, C. – BOYD GRABER, J. – BLEI, D. (2009): Reading Tea Leaves: How Humans Interpret Topic Models. Advances in Neural Information Processing Systems. 22. https:// proceedings.neurips.cc/paper_files/paper/2009/ hash/f92586a25bb3145facd64ab20fd554ff Abstract.html

CHEN, Z. – DOSS, H. (2019): Inference for the Number of Topics in the Latent Dirichlet Allocation Model via Bayesian Mixture Modeling. Journal of Computational and Graphical Statistics. 28. pp. 567–585. https://doi.org/10.108 0/10618600.2018.1558063

CHENG, X. – YAN, X. – LAN, Y., – GUO, J. (2014): BTM: Topic Modeling over Short Texts. IEEE Transactions on Knowledge and Data Engineering. 26(12). pp. 2928–2941. IEEE Transactions on Knowledge and Data Engineering. https://doi. org/10.1109/TKDE.2014.2313872

DE GROOT, M. – ALIANNEJADI, M. – HAAS, M. R. (2022): Experiments on Generalizability of BERTopic on Multi-Domain Short Text. ArXiv. https://arxiv.org/abs/2212.08459

DEVLIN, J. – CHANG, M.-W. – LEE, K. – TOUTANOVA, K. (2019): BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv abs/1810.04805. https:// doi.org/10.48550/arXiv.1810.04805

EGGER, R. – YU, J. (2022): A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts. Frontiers in Sociology. 7. 886498. https://doi.org/10.3389/ fsoc.2022.886498

GEORGE, C. P. – DOSS, H. (2018): Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model. Journal of Machine Learning Research. 18(162). pp. 1–38. http://jmlr. org/papers/v18/15-595.html

GLAZKOVA, A. (2021): Identifying Topics of Scientific Articles with BERT-Based Approaches and Topic Modeling. In: Gupta, M. – Ramakrishnan, G. (szerk.): Trends and Applications in Knowledge Discovery and Data Mining. Springer International Publishing. pp. 98–105. https://doi.org/10.1007/978-3-030- 75015-2_10

GRIFFITHS, T. L. – STEYVERS, M. (2004): Finding scientific topics. Proceedings of the National Academy of Sciences. 101(suppl_1). pp. 5228– 5235. https://doi.org/10.1073/pnas.0307752101

GROOTENDORST, M. (2022): BERTopic: Neural topic modeling with a class-based TF-IDF procedure. ArXiv abs/2203.05794. https://doi. org/10.48550/arXiv.2203.05794

HA, C. – TRAN, V.-D. – NGO VAN, L. – THAN, K. (2019): Eliminating overfitting of probabilistic topic models on short and noisy text: The role of dropout. International Journal of Approximate Reasoning. 112. pp. 85–104. https://doi. org/10.1016/j.ijar.2019.05.010

HUANG, J. – ROGERS, S. – JOO, E. (2014): Improving Restaurants by Extracting Subtopics from Yelp Reviews. iConference 2014 (Social Media Expo). https://hdl.handle.net/2142/48832

KOROTEEV, M. V. (2021): BERT: A Review of Applications in Natural Language Processing and Understanding. ArXiv. https://arxiv.org/ abs/2103.11943

KRISHNAN, A. (2023): Exploring the Power of Topic Modeling Techniques in Analyzing Customer Reviews: A Comparative Analysis. ArXiv. abs/2308.11520. https://doi.org/10.48550/ ARXIV.2308.11520

KWON, W. – LEE, M. – BACK, K.-J. (2020): Exploring the underlying factors of customer value in restaurants: A machine learning approach. International Journal of Hospitality Management. 91. 102643. https://doi. org/10.1016/j.ijhm.2020.102643

KWON, W. – LEE, M. – BOWEN J. T. (2022): Exploring Customers’ Luxury Consumption in Restaurants: A Combined Method of Topic Modeling and Three-Factor Theory. Cornell Hospitality Quarterly. 63(1). pp. 66‒7. https://doi. org/10.1177/19389655211037667

OGUNLEYE, B. – MASWERA, T. – HIRSCH, L. – GAUDOIN, J. – BRUNSDON, T. (2023): Comparison of Topic Modelling Approaches in the Banking Context. Applied Sciences. 13(2). 797. https://doi.org/10.3390/app13020797

PARK, E. – CHAE, B., – KWON, J. (2018): The structural topic model for online review analysis: Comparison between green and non green restaurants. Journal of Hospitality and Tourism Technology. 11(1). pp. 1–17. https://doi. org/10.1108/JHTT-08-2017-0075

RIEGER, J. – RAHNENFÜHRER, J. – JENTSCH C. (2020): Improving Latent Dirichlet Allocation: On Reliability of the Novel Method LDAPrototype. Natural Language Processing and Information Systems. 12089. pp. 118–125. https:// doi.org/10.1007/978-3-030-51310-8_11

LOVATO, P. – BICEGO, M. – MURINO, V. – PERINA, A. (2015): Robust Initialization for Learning Latent Dirichlet Allocation. In: Feragen, A. – Pelillo, M. – Loog, M. (eds): Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science. 9370. Springer, Cham. pp. 117–132. https://doi. org/10.1007/978-3-319-24261-3_10

QIANG, J. – QIAN, Z. – LI, Y. – YUAN, Y. – WU, X. (2022): Short Text Topic Modeling Techniques, Applications, and Performance: A Survey. IEEE Transactions on Knowledge and Data Engineering. 34(3). pp. 1427–1445. https://doi.org/10.1109/ TKDE.2020.2992485

TITOV, I. – McDONALD, R. (2008): Modeling Online Reviews with Multi-grain Topic Models. ArXiv. https://arxiv.org/abs/0801.1063

WESTERLUND, M. – SHAIRY, Z. – LEMINEN, S. – RAJAHONKA, M. (2019): Topic modelling analysis of online reviews: Indian restaurants at Amazon.com. In: Bitran, I. – Conn, S. – Gernreich, C. – Heber, M. – Huizingh, E. – Kokshagina, O. – Torkkeli, M. – Tynnhammar , M. (eds): Proceedings of the ISPIM Connecs Ottawa Conference. ISPIM. pp. 1-14.

ZHANG, S. – LY, L. – MACH, N. – AMAYA, C. (2022): Topic Modeling and Sentiment Analysis of Yelp Restaurant Reviews. International Journal of Information Systems in the Service Sector (IJISSS). 14(1). pp. 1–16. https://doi.org/10.4018/ IJISSS.295872

ZHAO, F. – LIU, H. (2023): Modeling customer satisfaction and revisit intention from online restaurant reviews: An attribute-level analysis. Industrial Management – Data Systems. 123(5). pp. 1548–1568. https://doi.org/10.1108/IMDS 09-2022-0570

ZUO, Y. – LI, C. – LIN, H. – WU, J. (2023): Topic Modeling of Short Texts: A Pseudo-Document View With Word Embedding Enhancement. IEEE Transactions on Knowledge and Data Engineering. 35(1). pp. 972–985. IEEE Transactions on Knowledge and Data Engineering. https:// doi.org/10.1109/TKDE.2021.3073195

Downloads

Megjelent

2025-04-10

Hogyan kell idézni

Hinek, M. (2025). Miről írnak a budapesti fine dining éttermek vendégei? Éttermi vendégvélemények témamodellezése neurális témamodellel. Turizmus Bulletin, 25(1), 15–24. https://doi.org/10.14267/TURBULL.2025v25n1.2

Folyóirat szám

Rovat

Tanulmányok