An analysis of same-day visitor flow based on mobile phone network data: a case study of Szentendre

Authors

  • Attila Csaba Kondor Research Centre For Astronomy and Earth Sciences
  • Tünde Szabó Research Centre For Astronomy and Earth Sciences
  • Márton Prorok Research Centre For Astronomy and Earth Sciences

DOI:

https://doi.org/10.14267/TURBULL.2020v20n4.2

Keywords:

mobile phone network data, big data, same-day visitors, satellite tourism, Szentendre

Abstract

The aim of the study is to analyse the volume and special features of the same-day visitor flow (satellite tourism) based on the mobile phone network data of Magyar Telekom in the case of Szentendre, which is an attractive small town close to Budapest. First, we identified the parameters valid for determining daily commuting, including both foreign and domestic satellite tourists. We then queried them from the mobile phone data set for given periods using our own software. From the commuting data, we separated visitors from those commuting for work, study and transit, using different validation steps. Based on our database, we estimated that the volume of the same-day visitor flow in Szentendre was ca. 510,000 in 2019, of which 75% are domestic visitors. Compared to traditional tourism, satellite tourism is less affected by seasonality, but a strong weekday-weekend dichotomy is visible, especially for domestic visitors.

References

AHAS, R. – AASA, A. – ROOSE, A. – MARK, Ü. – SILM, S. (2008): Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management. 29(3). pp. 469–486. https://doi.org/10.1016/j.tourman.2007.05.014

AHAS, R. – AASA, A. – SILM, S. – TIRU, M. (2010): Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging technologies. 18(1). pp. 45–54. https://doi.org/10.1016/j.trc.2009.04.011

CALABRESE, F. – DIAO, M. – DI LORENZO, G. – FERREIRA, J. – RATTI, C. (2013): Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging technologies. 26. pp. 301–313. https://doi.org/10.1016/j.trc.2012.09.009

DOYLE, J. – HUNG, P. – FARRELL, R. – McLOONE, S. (2014): Population Mobility Dynamics Estimated from Mobile Telephony Data. Journal of Urban Technology. 21(2). pp. 109–132. https://doi.org/10.1080/10630732.2014.888904

GICZI J. – SZŐKE K. (2017): Hivatalos statisztika és a Big Data. Statisztikai Szemle. 95(5). pp. 461–490. https://doi.org/10.20311/stat2017.05.hu0461

HATZIIOANNIDU, F. – POLYDOROPOULOU, A. (2017): Passenger Demand And Patterns Of Tourists’ Mobility In The Aegean Archipelago With Combined Use Of Big Datasets From Mobile Phones And Statistical Data From Ports And Airports. Transportation Research Procedia. 25. pp. 2309–2329. https://doi.org/10.1016/j.trpro.2017.05.442

HUANG, Z. – LING, X. – WANG, P. – ZHANG, F. – MAO, Y. – LIN, T. – WANG, F-Y. (2018): Modeling real-time human mobility based on mobile phone and transportation data fusion. Transportation Research Part C: Emerging technologies. 96. pp. 251–269. https://doi.org/10.1016/j.trc.2018.09.016

ILYÉS N. (2017): Láthatatlan turisták Budapest árnyékában. E-CONOM Online tudományos folyóirat. Tanulmányok a gazdaság- és társadalomtudományok területéről. 6(2). pp. 56– 65. https://doi.org/10.17836/EC.2017.2.056

JÄRV, O. – AHAS, R. – WITLOX, R. (2014): Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transportation Research Part C: Emerging technologies. 38. pp. 122–135. https://doi.org/10.1016/j.trc.2013.11.003

KUBO, T. – URYU, S. – YAMANO, H. – TSUGE, T. – YAMAKITA, T. – SHIRAYAMA, Y. (2020): Mobile phone network data reveal nationwide economic value of coastal tourism under climate change. Tourism Management. 77. pp. 1–9. https://doi.org/10.1016/j.tourman.2019.104010

KUUSIK, A. – NILBE, K. – MEHINE, T. – AHAS, R. (2014): Country as a free sample: the ability of tourism events to generate repeat visits. Case study with mobile positioning data in Estonia. Procedia – Social and Behavioral Sciences 148. pp. 262–270. https://doi.org/10.1016/j.sbspro.2014.07.042

MANFREDINI, F. – PUCCI, P. – TAGLIOLATO, P. (2014): Toward a Systemic Use of Manifold Cell Phone Network Data for Urban Analysis and Planning. Journal of Urban Technology. 21(2). pp. 39–59. https://doi.org/10.1080/10630732.2014.888217

MICHALKÓ G. – KÁDÁR B. – GEDE M. – BALIZS D. – KONDOR A. – ILYÉS N. (2016): A budapesti agglomeráció szatellitturizmusának környezeti hatásai. In: Sikos T. T. – Tiner T. (szerk.): Tájak, régiók, települések térben és időben: tanulmánykötet Beluszky Pál 80. születésnapjára. Budapest: Dialóg Campus Kiadó. pp. 241–257.

NMHH (2019): A Nemzeti Média- és Hírközlési Hatóság mobilpiaci jelentése. Tárgyidőszak: 2015. IV. – 2018. IV. negyedév. 26 p.

SALUVEER, E. – RAUN, J. – TIRU, M. – ALTIN, L. – KROON, J. – SNITARENKO, T. – AASA, A. – SILM, S. (2020): Methodological framework for producing national tourism statistics from mobile positioning data. Annals of Tourism Research. 81. https://doi.org/10.1016/j.annals.2020.102895

SÁGVÁRI B. (2019): Tér és társadalom Big Data szemüvegen keresztül. Területi Statisztika. 59(1). pp. 27–48. https://doi.org/10.15196/TS590102

SHIN, D. – ALIAGA D. – TUNÇER, B. – MÜLLER ARISONA, S. – KIM, S. – ZÜND, D. – SCHMITT, G. (2015): Urban sensing: Using smartphones for transportation mode. Computers, Environment and Urban Systems. 53. pp. 76–86. https://doi.org/10.1016/j.compenvurbsys.2014.07.011

SILM, S. – AHAS, R. (2014): The temporal variation of ethnic segregation in a city: Evidence from a mobile phone use dataset. Social Science Research. 47. pp. 30–43. https://doi.org/10.1016/j.ssresearch.2014.03.011

STEENBRUGGEN, J. – TRANOS, E. – NIJKAMP, P. (2015): Data from mobile phone operators: A tool for smarter cities? Telecommunications Policy. 39. pp. 335–346. http://dx.doi.org/10.1016/j.telpol.2014.04.001

TRASARTI, R. – GUIDOTTI, R. – MONREALE, A. – GIANNOTTI, F. (2017): MyWay: Location prediction via mobility profiling. Information Systems. 64(3). pp. 350–367. https://doi.org/10.1016/j.is.2015.11.002

WAN, L. – GAO, S. – WU, CH. – JIN, Y. – MAO, M. – YANG, L. (2018): Big data and urban system model – Substitutes or complements? A case study of modelling commuting patterns in Beijing. Computers, Environment and Urban Systems. 68. pp. 64–77. https://doi.org/10.1016/j.compenvurbsys.2017.10.004

WYNEN, J. (2013): Explaining travel distance during same-day visits. Tourism Management. 36. pp. 133–140. https://doi.org/10.1016/j.tourman.2012.11.007

Downloads

Published

2020-11-14

How to Cite

Kondor, A. C., Szabó, T., & Prorok, M. (2020). An analysis of same-day visitor flow based on mobile phone network data: a case study of Szentendre. Turizmus Bulletin, 20(Különszám), 19–28. https://doi.org/10.14267/TURBULL.2020v20n4.2

Issue

Section

Workshop