Önvezető járművek a turizmusban – technológiaelfogadás a turisták szemszögéből

Szerzők

  • Márk Miskolczi Budapesti Corvinus Egyetem
  • András Munkácsy KTI Közlekedéstudományi Intézet Nonprofit Kft.
  • Dávid Földes Budapesti Műszaki és Gazdaságtudományi Egyetem

DOI:

https://doi.org/10.14267/TURBULL.2022v22n4.1

Kulcsszavak:

automatizáció, önvezető járművek, technológiaelfogadás, szisztematikus szakirodalmi áttekintés, kovarianciaalapú strukturális egyenlőségek modellezése (CB-SEM)

Absztrakt

Az önvezető járművek radikálisan átalakíthatják a közlekedés és a turizmus rendszerét a közelj övőben. A technológia terjedésével a fogyasztói elvárások változhatnak, melyek a turisztikai célú utazások esetében is megváltozott döntési helyzeteket idézhetnek elő. Az alábbi tanulmányban a technológiaelfogadási modellek egyfajta kiterjesztése kerül bemutatásra, mely az önvezető járművek turisztikai célú hasznosíthatóságára világít rá. A kutatás keretében online adatfelvételre került sor (n=646), a modell létrehozásához a kovarianciaalapú strukturális egyenlőségek modellezése (CB-SEM) elemzési módszert alkalmaztuk. Az elemzés alapján egy olyan modell megalkotására került sor, mely a korábbi kutatásokkal ellentétben a turizmus szemszögéből vizsgálja az önvezető járművekkel kapcsolatos fogyasztói attitűdöt. Az új modell igazolja, hogy a járművek turisztikai célú alkalmazhatósága és a szokatlan utazási környezet pozitív, míg a hagyományos járműhasználathoz való ragaszkodás negatív hatást gyakorol az önvezető járművek használati szándékára.

Hivatkozások

ÁSVÁNYI K. – JUHÁSZ-DÓRA K. – JÁSZBERÉNYI M. – MICHALKÓ G. (2017): Literature review of renewable energy in the tourism industry. Journal of Environmental Management & Tourism. 8(2). pp. 476–491. https://doi.org/10.14505//jemt.v8.2(18).21

BROWN, T. A. (2015): Confirmatory Factor Analysis for Applied Research. New York, NY: Guilford Press.

BUCKLEY, L. – KAYE, S. A. – PRADHAN, A. K. (2018): Psychosocial factors associated with intended use of automated vehicles: A simulated driving study. Accident Analysis & Prevention. 115. pp. 202–208. https://doi.org/10.1016/j.aap.2018.03.021

CERVERO, R. – KOCKELMAN, K. (1997): Travel demand and the 3Ds: Density, diversity, and design. Transportation research part D: Transport and environment. 2(3). pp. 199–219. https://doi.org/10.1016/S1361-9209(97)00009-6

CHEN, C. F. (2019): Factors affecting the decision to use autonomous shuttle services: Evidence from a scooter-dominant urban context. Transportation Research Part F: Traffic Psychology and Behaviour. 67. pp. 195–204. https://doi.org/10.1016/j.trf.2019.10.016

CHIN, W. W. (1998): The partial least squares approach to structural equation modeling. In: Marcoulides, G. A. (ed): Modern Methods for Business Research. Psychology Press, New York. pp. 295–336. https://doi.org/10.4324/9781410604385

COHEN, S. A. – HOPKINS, D. (2019): Autonomous vehicles and the future of urban tourism. Annals of Tourism Research. 74. pp. 33–42. https://doi. org/10.1016/j.annals.2018.10.009

CSERDI ZS. – KENESEI ZS. (2021): Az okos hotelekhez kapcsolódó attitűdöket befolyásoló tényezők nyomában: fókuszban a Z generáció. Turizmus Bulletin. 21(4). pp. 25–33. https://doi.org/10.14267/TURBULL.2021v21n4.3

DAVIS, F. D. (1986): A technology acceptance model for empirically testing new end-user information systems: Theory and results. Cambridge, MA: Massachusetts Institute of Technology.

DIRSEHAN, T. – CAN, C. (2020): Examination of trust and sustainability concerns in autonomous vehicle adoption. Technology in Society. 63. 101361. https://doi.org/10.1016/j.techsoc.2020.101361

DIXON, G. – HART, P. S. – CLARKE, C. – O’DONNELL, N. H. – HMIELOWSKI, J. (2020): What drives support for self-driving car technology in the United States? Journal of Risk Research. 23(3). pp. 275–287. https://doi.org/10.1080/13669877.2018.1517384

DRAGAN, D. – TOPOLŠEK, D. (2014): Introduction to structural equation modeling: review, methodology and practical applications. The 11th International Conference on Logistics and Sustainable Transport. 19–21 June 2014, Celje, Slovenia. pp. 1–27. Slovenia: University of Maribor, Faculty of Logistics.

DU, H. – ZHU, G. – ZHENG, J. (2021): Why travelers trust and accept self-driving cars: an empirical study. Travel Behaviour and Society. 22. pp. 1–9. https://doi.org/10.1016/j.tbs.2020.06.012

FALK, R. F. – MILLER, N. B. (1992): A Primer for Soft Modeling. Akron, OH: University of Akron Press.

GASKIN, C. J. – HAPPELL, B. (2014): On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. International Journal of Nursing Studies. 51. pp. 511–521. https://doi.org/10.1016/j.ijnurstu.2013.10.005

HAIR, J. F. – CELSI, M. – ORTINAU, D. J. – BUSH, R. P. (2010): Essentials of Marketing Research. (Vol. 2). New York, NY: McGraw-Hill/Irwin.

HARRINGTON, D. (2009): Confirmatory Factor Analysis. New York, NY: Oxford University Press.

HESS, P. M. – VERNEZ MOUDON, A. – CATHERINE SNYDER, M. – STANILOV, K. (1999): Site design and pedestrian travel. Transportation Research Record. 1674(1). pp. 9–19. https://doi.org/10.3141/1674-02

HULSE, L. M. – XIE, H. – GALEA, E. R. (2018): Perceptions of autonomous vehicles: Relationships with road users, risk, gender, and age. Safety Science. 102. pp. 1–13. https://doi.org/10.1016/j.ssci.2017.10.001

IVANOV, S. H. – WEBSTER, C. (2017): Adoption of robots, artificial intelligence and service automation by travel, tourism, and hospitality companies – a cost-benefit analysis. International Scientific Conference “Contemporary Tourism – Traditions and Innovations. Bulgaria: Sofia University.

JARRELL, M. G. (1992): A comparison of two procedures, the Mahalanobis distance and the Andrews-Pregibon statistic, for identifying multivariate outliers.

JÁSZBERÉNYI M. – KOTOSZ B. (2009): Közlekedési szokások vizsgálata Budapest délnyugati agglomerációjában. Statisztikai Szemle. 87(2). pp.

-190.

JÁSZBERÉNYI M. – PÁLFALVI J. (2006): Közlekedés a gazdaságban. Aula Kiadó, Budapest.

KARNOUSKOS, S. (2020): The role of utilitarianism, self-safety, and technology in the acceptance of self-driving cars. Cognition, Technology & Work. pp. 1–9. https://doi.org/10.1007/s10111-020-00649-6

KELLERMAN, A. (2018): Automated and Autonomous Spatial Mobilities. Cheltenham – Northampton, MA: Edward Elgar Publishing.

KESZEY, T. (2020): Behavioural intention to use autonomous vehicles: Systematic review and empirical extension. Transportation Research Part C: Emerging Technologies. 119. 102732. https://doi.org/10.1016/j.trc.2020.102732

KLINE, R. B. (2015): Principles and Practice of Structural Equation Modeling. 4th edition. New York, NY – London: Guilford Press.

KOUL, S. – EYDGAHI, A. (2018): Utilizing technology acceptance model (TAM) for driverless car technology adoption. Journal of Technology Management & Innovation. 13(4). pp. 37–46. http://dx.doi.org/10.4067/S0718-27242018000400037

LEE, J. – LEE, D. – PARK, Y. – LEE, S. – HA, T. (2019): Autonomous vehicles can be shared, but a feeling of ownership is important: Examination of the influential factors for intention to use autonomous vehicles. Transportation Research Part C: Emerging Technologies. 107. pp. 411–422. https://doi.org/10.1016/j.trc.2019.08.020

LEICHT, T. – CHTOUROU, A. – YOUSSEF, K. B. (2018). Consumer innovativeness and intentioned autonomous car adoption. The Journal of High Technology Management Research. 29(1). pp. 1–11. https://doi.org/10.1016/j.hitech.2018.04.001

LEVINSON, H. S. – WYNN, F. H. (1963): Effects of density on urban transportation requirements. Highway Research Record. 1963(2). pp. 38–64.

LILJAMO, T. – LIIMATAINEN, H. – PÖLLÄNEN, M. (2018): Attitudes and concerns on automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour. 59. pp. 24–44. https://doi.org/10.1016/j.trf.2018.08.010

MEURS, H. – HAAIJER, R. (2001): Spatial structure and mobility. Transportation Research Part D: Transport and Environment. 6(6). pp. 429–446. https://doi.org/10.1016/S1361-9209(01)00007-4

MISKOLCZI, M. – FÖLDES, D. – MUNKÁCSY, A. – JÁSZBERÉNYI, M. (2021): Urban mobility scenarios until the 2030s. Sustainable Cities and Society. 72. 103029. https://doi.org/10.1016/j.scs.2021.103029

PAGE, M. J. – McKENZIE, J. E. – BOSSUYT, P. M. et al. (2021): The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews 10(89). https://doi.org/10.1186/s13643-021-01626-4

PANAGIOTOPOULOS, I. – DIMITRAKOPOULOS, G. (2018): An empirical investigation on consumers’ intentions towards autonomous driving. Transportation Research Part C: Emerging Technologies. 95. pp. 773–784. https://doi.org/10.1016/j.trc.2018.08.013

PINKE-SZIVA I. – KELLER K. (2021): Okos turizmus és okos rendezvények vizsgálata a Székesfehérvári Királyi Napok tükrében. Turizmus Bulletin. 21(2). pp. 34–42. https://doi.org/10.14267/TURBULL.2021v21n2.4

POTOGLOU, D. – KANAROGLOU, P. S. (2008): Modelling car ownership in urban areas: a case study of Hamilton, Canada. Journal of Transport Geography. 16(1). pp. 42–54. https://doi.org/10.1016/j.jtrangeo.2007.01.006

PRIDEAUX, B. – YIN, P. (2019): The disruptive potential of autonomous vehicles (AVs) on future low-carbon tourism mobility. Asia Pacific Journal of Tourism Research. 24(5). pp. 459–467. https://doi.org/10.1080/10941665.2019.1588138

RIBEIRO, M. A. – GURSOY, D. – CHI, O. H. (2021): Customer Acceptance of Autonomous Vehicles in Travel and Tourism. Journal of Travel Research. 0047287521993578. https://doi.org/10.1177/0047287521993578

RÖDEL, C. – STADLER, S. – MESCHTSCHERJAKOV, A. – TSCHELIGI, M. (2014): Towards autonomous cars: The effect of autonomy levels on acceptance and user experience. AutomotiveUI ‘14: Proceedings of the 6th international conference on automotive user interfaces and interactive vehicular applications. pp. 1–8. https://doi.org/10.1145/2667317.2667330

SYAHRIVAR, J. – GYULAVÁRI, T. – JÁSZBERÉNYI, M. – ÁSVÁNYI, K. – KÖKÉNY, L. – CHAIRY, C. (2021): Surrendering personal control to automation: Appalling or appealing? Transportation Research Part F: Traffic Psychology and Behaviour. 80. pp. 90–103. https://doi.org/10.1016/j.trf.2021.03.018

TAN, W. K. – LIN, C. Y. (2020): Driverless car rental at tourist destinations: From the tourists’ perspective. Asia Pacific Journal of Tourism Research. 25(11). pp. 1153–1167. https://doi.org/10.1080/10941665.2020.1825007

TUSSYADIAH, I. P. – ZACH, F. J. – WANG, J. (2017): Attitudes toward autonomous on demand mobility system: The case of selfdriving taxi. In: Schegg, R. – Stangl, B. (eds): Information and communication technologies in tourism 2017. Cham: Springer. pp. 755–766. https://10.1007/978-3-319-51168-9_54

VENKATESH, V. – BALA, H. (2008): Technology acceptance model 3 and a research agenda on interventions. Decision Sciences. 39(2). pp. 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

VENKATESH, V. – DAVIS, F. D. (2000): A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science. 46(2). pp. 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

VENKATESH, V. – MORRIS, M. G. – DAVIS, G. B. – DAVIS, F. D. (2003): User acceptance of information technology: Toward a unified view. MIS Quarterly. 27(3). pp. 425–478. https://doi.org/10.2307/30036540

VENKATESH, V. – THONG, J. Y. – XU, X. (2012): Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly. 36(1). pp. 157–178. https://doi.org/10.2307/41410412

WESTLAND, J. C. (2010): Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications. 9(6). pp. 476–487. https://doi.org/10.1016/j.elerap.2010.07.003

XU, Z. – ZHANG, K. – MIN, H. – WANG, Z. – ZHAO, X. – LIU, P. (2018): What drives people to accept automated vehicles? Findings from a field experiment. Transportation Research Part C: Emerging Technologies. 95. pp. 320–334. https://doi.org/10.1016/j.trc.2018.07.024

YUEN, K. F. – CAI, L. – QI, G. – WANG, X. (2021): Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory. Technology Analysis & Strategic Management. 33(5). pp. 505–519. https://doi.org/10.1080/09537325.2020.1826423

ZHANG, T. – TAO, D. – QU, X. – ZHANG, X. – LIN, R. – ZHANG, W. (2019): The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transportation Research Part C: Emerging Technologies. 98. pp. 207–220. https://doi.org/10.1016/j.trc.2018.11.018

ZHU, G. – CHEN, Y. – ZHENG, J. (2020): Modelling the acceptance of fully autonomous vehicles: a media-based perception and adoption model. Transportation Research Part F: Traffic Psychology and Behaviour. 73. pp. 80–91. https://doi.org/10.1016/j.trf.2020.06.004

Internetes források

SAE INTERNATIONAL (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. https://www.sae.org/standards/content/j3016_201806/, Letöltve: 2022. január 5.

SOPER, D. S. (2021): A-priori Sample Size Calculator for Structural Equation Models. https://www. danielsoper.com/statcalc, Letöltve: 2022. január 5.

Downloads

Megjelent

2022-12-13

Hogyan kell idézni

Miskolczi, M., Munkácsy, A., & Földes, D. (2022). Önvezető járművek a turizmusban – technológiaelfogadás a turisták szemszögéből. Turizmus Bulletin, 22(4), 4–15. https://doi.org/10.14267/TURBULL.2022v22n4.1

Folyóirat szám

Rovat

Lektorált tanulmányok