Analysis of the performance of predictive models during Covid-19 and the Russian-Ukrainian war
DOI:
https://doi.org/10.35551/PFQ_2023_2_7Keywords:
COVID-19, Russian-Ukrainian war, stock market price forecast, artificial intelligence, predictive algorithms, C45, C53, G11, G17Abstract
In our paper, we investigate how effectively artificial intelligence can be used to predict stock market trends in the world’s leading equity markets over the period 01/01/2010 to 09/16/2022. Covid-19 and the Russian-Ukrainian war have had a strong impact on the capital markets and therefore the study was conducted in a highly volatile environment. The analysis was performed on three time intervals, using two machine learning algorithms of different complexity (decision tree, LSTM) and a parametric statistical model (linear regression). The evaluation of the results obtained was based on mean absolute percentage error (MAPE). In our study, we show that predictive models can perform better than linear regression in the period of high volatility. Another important finding is that the predictive models performed better in the post-Russian-Ukrainian war period than after the outbreak of Covid-19. Stock market price forecasting can play an important role in fundamental and technical analysis, can be incorporated into the decision criteria of algorithmic trading, or can be used on its own to automate trading.
References
Báger, G., Parragh, B. (2020). A koronavírus-válság, a fenntartható fejlődés és az ösztönző állam modellje. Pénzügyi Szemle, 65(2. különszám), 86–113.oldal https://doi.org/10.5121/csit.2016.60609doi.org/10.35551/PSZ_2021_k_1_2
Ballings, M., Van den Poel, D., Hespeels, N., Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with Applications, 42(20), 7046–7056. https://doi.org/10.1016/j.eswa.2015.05.013
Banik, S., Sharma, N., Mangla, M., Mohanty, S. N., Shitharth, S. (2022). LSTM based decision support system for swing trading in stock market. Knowledge-Based Systems, 239, 107994. https://doi.org/10.1016/j.knosys.2021.107994
Basak, S., Kar, S., Saha, S., Khaidem, L., Dey, S. R. (2019). Predicting the directionof stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567. https://doi.org/10.1016/j.najef.2018.06.013
Cao, J., Li, Z., Li, J. (2019). Financial time series forecasting model based on CEEMDAN
and LSTM. Physica A: Statistical Mechanics and its Applications, 519, pp. 127–139. https://doi.org/10.1016/j.physa.2018.11.061
Duarte Duarte, J. B., Talero Sarmiento, L. H., Sierra Juárez, K. J. (2017). Evaluation of the effect of investor psychology on an artificial stock market through its degree of efficiency. Contaduría y Administración, 62(4), 1361–1376. https://doi.org/10.1016/j.cya.2017.06.014
Dunne, M. (2015). Stock market prediction. University College Cork.
Fejes, E., Futó, I. (2021). Mesterséges intelligencia a közigazgatásban – az érdemi ügyintézés támogatása. Pénzügyi Szemle, 66 (1. különszám), 24–51. oldal https://doi.org/10.35551/PSZ_2021_k_1_2
Fischer, T., Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054
Gonzalez Miranda, F., Burgess, N. (1997). Modelling market volatilities: the
neural network perspective. The European Journal of Finance, 3(2), pp. 137–157.
https://doi.org/10.1080/135184797337499
Hajiabotorabi, Z., Kazemi, A., Samavati, F. F., Ghaini, F. M. M. (2019). Improving DWT-RNN model via B-spline wavelet multiresolution to forecast a high-frequency time series. Expert Systems with Applications, 138, 112842. https://doi.org/10.1016/j.eswa.2019.112842
Hamid, S. A., Iqbal, Z. (2004). Using neural networks for forecasting volatility of
S&P 500 Index futures prices. Journal of Business Research, 57(10), pp. 1116–1125.
https://doi.org/10.1016/s0148-2963(03)00043-2
Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., Soman, K. P. (2018). NSE
stock market prediction using deep-learning models. Procedia computer science,
, pp. 1351–1362. https://doi.org/10.1016/j.procs.2018.05.050
Huang, W., Nakamori, Y., Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), pp. 2513–2522. https://doi.org/10.1016/j.cor.2004.03.016
Jing, N., Wu, Z., Wang, H. (2021). A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Systems with Applications, 178, 115019. https://doi.org/10.1016/j.eswa.2021.115019
Kaushik, M., Giri, A. K. (2020). Forecasting Foreign Exchange Rate: A Multivariate Comparative Analysis between Traditional Econometric, Contemporary Machine Learning & Deep Learning Techniques. arXiv preprint arXiv:2002.10247. https://doi.org/10.48550/arXiv.2002.10247
Kim, H. Y., Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25-37. https://doi.org/10.1016/j.eswa.2018.03.002
Lin, H., Sun, Q., Chen, S. Q. (2020). Reducing exchange rate risks in international trade: a hybrid forecasting approach of CEEMDAN and multilayer LSTM. Sustainability, 12(6), 2451. https://doi.org/10.3390/su12062451
Liu, Y. (2019). Novel volatility forecasting using deep learning–long short term memory recurrent neural networks. Expert Systems with Applications, 132, pp. 99–109. https://doi.org/10.1016/j.eswa.2019.04.038
Long, J., Chen, Z., He, W., Wu, T., Ren, J. (2020). An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market. Applied Soft Computing, https://doi.org/106205. 10.1016/j.asoc.2020.106205
Lugt, B. J., Feelders, A. J. (2019). Conditional forecasting of water level time series with RNNs. In International Workshop on Advanced Analysis and Learning on Temporal Data (pp. 55-71). Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_5
Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., Muhammad, K. (2019). A local and global event sentiment based efficient stock exchange forecasting using deep learning. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.07.011
Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis on the Tehran stock exchange. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.3015966
Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), pp. 7653–7670. https://doi.org/10.1016/j.eswa.2014.06.009
Nelson, D. M., Pereira, A. C., De Oliveira, R. A. (2017). Stock market’s price movement prediction with LSTM neural networks. In 2017 International joint conference on neural networks, pp. 1419–1426. https://doi.org/10.1109/IJCNN.2017.7966019
Nikou, M., Mansourfar, G., Bagherzadeh, J. (2019). Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intelligent Systems in Accounting, Finance and Management, 26(4), 164–174. https://doi.org/10.1002/isaf.1459
Novák, Z., Tatay, T. (2021). ’Captivated by Liquidity’–Theoretical Traps and Practical Mazes. Public Finance Quarterly, 66(1), 50–67. https://doi.org/10.35551/PFQ_2021_1_3
Nti, I. K., Adekoya, A. F., Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 53(4), pp. 3007–3057. https://doi.org/10.1007/s10462-019-09754-z
Ormoneit, D., Neuneier, R. (1996). Experiments in predicting the German stock index DAX with density estimating neural networks. In IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr) (pp.66–71). IEEE. https://doi.org/10.1109/CIFER.1996.501825
Ou, P., Wang, H. (2009). Prediction of stock market index movement by ten data mining techniques. Modern Applied Science, 3(12), 28–42.
Petersen, N. C., Rodrigues, F., Pereira, F. C. (2019). Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Systems with Applications, 120, pp. 426–435.
Rather, A. M. (2021). LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model. EURO Journal on Decision Processes, 9, 100001. https://doi.org/10.1016/j.ejdp.2021.100001
Reston Filho, J. C., Affonso, C. D. M., de Oliveira, R. C. (2014). Energy price prediction multi-step ahead using hybrid model in the Brazilian market. Electric power systems research, 117, 115-122. https://doi.org/10.1016/j.epsr.2014.08.006
Roondiwala, M., Patel, H. Varma, S (2017). Predicting Stock Prices Using LSTM. International Journal of Science and Research, 6(4), pp. 1754–1756. https://www.ijsr.net/archive/v6i4/ART20172755.pdf
Russell S. Norvig P. (2003). Artificial Intelligence. A Modern Approach. New Jersey, Pearson Education, 4, 20.
Sadorsky, P. (2022). Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices? The North American Journal of Economics and Finance, 101705. https://doi.org/10.1016/j.najef.2022.101705
Thi Kieu Tran, T., Lee, T., Shin, J. Y., Kim, J. S., Kamruzzaman, M. (2020). Deep learning-based maximum temperature forecasting assisted with meta-learning for hyperparameter optimization. Atmosphere, 11(5), 487. https://doi.org/10.3390/atmos11050487
Török, L. (2020). A koronavírus miatti államadósság-növekedés az Európai Unió országaiban: A válságból való kilábalás utáni államadósság-ráták eltérő recessziós scenáriók mentén. Pénzügyi Szemle, 65(3), 350–363. https://doi.org/10.35551/PSZ_2020_3_2
Zolfaghari, M., Gholami, S. (2021). A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction. Expert Systems with Applications, 182, 115149. https://doi.org/10.1016/j.eswa.2021.115149
Downloads
Published
How to Cite
Issue
Section
License
Authors assign copyright to Pénzügyi Szemle / Public Finance Quarterly. Authors are responsible for permission to reproduce copyright material from other sources.