Prediktív modellek teljesítményének vizsgálata Covid-19 és az orosz-ukrán háború időszakában

Szerzők

  • László Vancsura Magyar Agrár- és Élettudományi Egyetem
  • Tibor Bareith Közgazdaság- és Regionális Tudományi Kutatóközpont

DOI:

https://doi.org/10.35551/PFQ_2023_2_7

Kulcsszavak:

COVID-19, árfolyam-előrejelzés, mesterséges intelligencia, prediktív algoritmusok, G17, G11, C45, C53

Absztrakt

Tanulmányunkban arra a kérdésre keressük a választ, hogy mennyire hatékonyan lehet a mesterséges intelligencia segítségével előrejelezni a részvénypiaci trendeket a világ vezető részvénypiacain a 2010. 01. 01. és a 2022. 09. 16. közötti időszakban. A Covid-19 és az orosz–ukrán háború erőteljesen éreztette hatását a tőkepiacokon is, ezért egy rendkívül volatilitásintenzív környezetben folyt a vizsgálat. Az elemzés során három időintervallumon két különböző komplexitású gépi tanulási algoritmust (döntési fa, LSTM) és egy parametrikus statisztikai modellt (lineáris regresszió) alkalmaztunk. A kapott eredmények kiértékelését az átlagos abszolút százalékos hiba alapján (MAPE) értékeltük. Tanulmányunkban igazoltuk, hogy a prediktív modellek a kiemelt volatilitású időszakban jobban tudnak teljesíteni, mint a lineáris regresszió. Emellett fontos eredményünk, hogy az orosz–ukrán háborút követő időszakban jobban teljesítettek az előrejelző modellek, mint a Covid-19 kitörése után. Az árfolyam-előrejelzés a fundamentális és technikai elemzések során is fontos szerepet kaphat, beépíthető az algoritmikus kereskedés döntési szempontjai közé, azonban akár önmagában is alkalmas lehet a kereskedés automatizálására.

Hivatkozások

Báger, G., Parragh, B. (2020). A koronavírus-válság, a fenntartható fejlődés és az ösztönző állam modellje. Pénzügyi Szemle, 65(2. különszám), 86–113.oldal https://doi.org/10.5121/csit.2016.60609doi.org/10.35551/PSZ_2021_k_1_2

Ballings, M., Van den Poel, D., Hespeels, N., Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with Applications, 42(20), 7046–7056. https://doi.org/10.1016/j.eswa.2015.05.013

Banik, S., Sharma, N., Mangla, M., Mohanty, S. N., Shitharth, S. (2022). LSTM based decision support system for swing trading in stock market. Knowledge-Based Systems, 239, 107994. https://doi.org/10.1016/j.knosys.2021.107994

Basak, S., Kar, S., Saha, S., Khaidem, L., Dey, S. R. (2019). Predicting the directionof stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552-567. https://doi.org/10.1016/j.najef.2018.06.013

Cao, J., Li, Z., Li, J. (2019). Financial time series forecasting model based on CEEMDAN

and LSTM. Physica A: Statistical Mechanics and its Applications, 519, pp. 127–139. https://doi.org/10.1016/j.physa.2018.11.061

Duarte Duarte, J. B., Talero Sarmiento, L. H., Sierra Juárez, K. J. (2017). Evaluation of the effect of investor psychology on an artificial stock market through its degree of efficiency. Contaduría y Administración, 62(4), 1361–1376. https://doi.org/10.1016/j.cya.2017.06.014

Dunne, M. (2015). Stock market prediction. University College Cork.

Fejes, E., Futó, I. (2021). Mesterséges intelligencia a közigazgatásban – az érdemi ügyintézés támogatása. Pénzügyi Szemle, 66 (1. különszám), 24–51. oldal https://doi.org/10.35551/PSZ_2021_k_1_2

Fischer, T., Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054

Gonzalez Miranda, F., Burgess, N. (1997). Modelling market volatilities: the

neural network perspective. The European Journal of Finance, 3(2), pp. 137–157.

https://doi.org/10.1080/135184797337499

Hajiabotorabi, Z., Kazemi, A., Samavati, F. F., Ghaini, F. M. M. (2019). Improving DWT-RNN model via B-spline wavelet multiresolution to forecast a high-frequency time series. Expert Systems with Applications, 138, 112842. https://doi.org/10.1016/j.eswa.2019.112842

Hamid, S. A., Iqbal, Z. (2004). Using neural networks for forecasting volatility of

S&P 500 Index futures prices. Journal of Business Research, 57(10), pp. 1116–1125.

https://doi.org/10.1016/s0148-2963(03)00043-2

Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., Soman, K. P. (2018). NSE

stock market prediction using deep-learning models. Procedia computer science,

, pp. 1351–1362. https://doi.org/10.1016/j.procs.2018.05.050

Huang, W., Nakamori, Y., Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), pp. 2513–2522. https://doi.org/10.1016/j.cor.2004.03.016

Jing, N., Wu, Z., Wang, H. (2021). A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Systems with Applications, 178, 115019. https://doi.org/10.1016/j.eswa.2021.115019

Kaushik, M., Giri, A. K. (2020). Forecasting Foreign Exchange Rate: A Multivariate Comparative Analysis between Traditional Econometric, Contemporary Machine Learning & Deep Learning Techniques. arXiv preprint arXiv:2002.10247. https://doi.org/10.48550/arXiv.2002.10247

Kim, H. Y., Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25-37. https://doi.org/10.1016/j.eswa.2018.03.002

Lin, H., Sun, Q., Chen, S. Q. (2020). Reducing exchange rate risks in international trade: a hybrid forecasting approach of CEEMDAN and multilayer LSTM. Sustainability, 12(6), 2451. https://doi.org/10.3390/su12062451

Liu, Y. (2019). Novel volatility forecasting using deep learning–long short term memory recurrent neural networks. Expert Systems with Applications, 132, pp. 99–109. https://doi.org/10.1016/j.eswa.2019.04.038

Long, J., Chen, Z., He, W., Wu, T., Ren, J. (2020). An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market. Applied Soft Computing, https://doi.org/106205. 10.1016/j.asoc.2020.106205

Lugt, B. J., Feelders, A. J. (2019). Conditional forecasting of water level time series with RNNs. In International Workshop on Advanced Analysis and Learning on Temporal Data (pp. 55-71). Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_5

Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., Muhammad, K. (2019). A local and global event sentiment based efficient stock exchange forecasting using deep learning. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.07.011

Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis on the Tehran stock exchange. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.3015966

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), pp. 7653–7670. https://doi.org/10.1016/j.eswa.2014.06.009

Nelson, D. M., Pereira, A. C., De Oliveira, R. A. (2017). Stock market’s price movement prediction with LSTM neural networks. In 2017 International joint conference on neural networks, pp. 1419–1426. https://doi.org/10.1109/IJCNN.2017.7966019

Nikou, M., Mansourfar, G., Bagherzadeh, J. (2019). Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intelligent Systems in Accounting, Finance and Management, 26(4), 164–174. https://doi.org/10.1002/isaf.1459

Novák, Z., Tatay, T. (2021). ’Captivated by Liquidity’–Theoretical Traps and Practical Mazes. Public Finance Quarterly, 66(1), 50–67. https://doi.org/10.35551/PFQ_2021_1_3

Nti, I. K., Adekoya, A. F., Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 53(4), pp. 3007–3057. https://doi.org/10.1007/s10462-019-09754-z

Ormoneit, D., Neuneier, R. (1996). Experiments in predicting the German stock index DAX with density estimating neural networks. In IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr) (pp.66–71). IEEE. https://doi.org/10.1109/CIFER.1996.501825

Ou, P., Wang, H. (2009). Prediction of stock market index movement by ten data mining techniques. Modern Applied Science, 3(12), 28–42.

Petersen, N. C., Rodrigues, F., Pereira, F. C. (2019). Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Systems with Applications, 120, pp. 426–435.

Rather, A. M. (2021). LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model. EURO Journal on Decision Processes, 9, 100001. https://doi.org/10.1016/j.ejdp.2021.100001

Reston Filho, J. C., Affonso, C. D. M., de Oliveira, R. C. (2014). Energy price prediction multi-step ahead using hybrid model in the Brazilian market. Electric power systems research, 117, 115-122. https://doi.org/10.1016/j.epsr.2014.08.006

Roondiwala, M., Patel, H. Varma, S (2017). Predicting Stock Prices Using LSTM. International Journal of Science and Research, 6(4), pp. 1754–1756. https://www.ijsr.net/archive/v6i4/ART20172755.pdf

Russell S. Norvig P. (2003). Artificial Intelligence. A Modern Approach. New Jersey, Pearson Education, 4, 20.

Sadorsky, P. (2022). Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices? The North American Journal of Economics and Finance, 101705. https://doi.org/10.1016/j.najef.2022.101705

Thi Kieu Tran, T., Lee, T., Shin, J. Y., Kim, J. S., Kamruzzaman, M. (2020). Deep learning-based maximum temperature forecasting assisted with meta-learning for hyperparameter optimization. Atmosphere, 11(5), 487. https://doi.org/10.3390/atmos11050487

Török, L. (2020). A koronavírus miatti államadósság-növekedés az Európai Unió országaiban: A válságból való kilábalás utáni államadósság-ráták eltérő recessziós scenáriók mentén. Pénzügyi Szemle, 65(3), 350–363. https://doi.org/10.35551/PSZ_2020_3_2

Zolfaghari, M., Gholami, S. (2021). A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction. Expert Systems with Applications, 182, 115149. https://doi.org/10.1016/j.eswa.2021.115149

##submission.downloads##

Megjelent

2023-06-30

Hogyan kell idézni

Vancsura, L., & Bareith, T. (2023). Prediktív modellek teljesítményének vizsgálata Covid-19 és az orosz-ukrán háború időszakában. Pénzügyi Szemle, 69(2), 123–138. https://doi.org/10.35551/PFQ_2023_2_7

Folyóirat szám

Rovat

Tanulmányok