Did the Covid-19 Pandemic Affect the Relationship Between Trading Volume and Return Volatility in the Cryptocurrencies?
Keywords:
Cryptocurrency Market, Covid-19, Return Volatility, Trading Volume, C32, G12, G15Abstract
In this study, it was investigated whether the Covid-19 pandemic, which started to affect the world in early 2020, influenced the relationship between return volatility and trading volume in the cryptocurrency market. In the empirical part of the study, 40 cryptocurrencies were included in the analysis. The data were divided into two separate periods as before and during the pandemic. Two alternative estimators developed by Garman and Klass (1980) and by Rogers and Satchell (1991) were used to measure the return volatility of cryptocurrencies. With causality and simultaneous correlation analyses, it was determined that the sequential information arrival hypothesis was valid in the cryptocurrency market in the pre-pandemic period. In the pandemic period, the sequential information arrival hypothesis lost its effect and left its place to the mixture of distribution hypothesis.
References
Ali, R., Barrdear, J., Clews, R., Southgate, J. (2014). The Economics of Digital Currencies. [A digitalis penznemek gazdasagtana.] Bank of England Quarterly Bulletin, Q3, pp. 276–286
Andersen, T. G. (1996). Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility. [Hozamvolatilitas es kereskedesi volumen: a sztochasztikus volatilitas informaciofolyam ertelmezese.] The Journal of Finance, 51(1), pp. 169–204, https://doi.org/10.1111/j.1540-6261.1996.tb05206.x
Balcılar, M., Bouri, E., Gupta, R., Roubaud, D. (2017). Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach [Előre tudja-e jelezni a volumen a bitcoin hozamat es volatilitasat? Kvantilisalapu megkozelites.] Economic Modelling, 64, pp. 74–81, https://doi.org/10.1016/j.econmod.2017.03.019
Bouri, E., Lau, C. K. M., Lucey, B., Roubaud, D. (2019). Trading Volume and the Predictability of Return and Volatility in the Cryptocurrency Market. [A kereskedesi volumen, valamint a hozam es a volatilitas kiszamithatosaga a kriptovaluta-piacon.] Finance Research Letters, 29, pp. 340–346, https://doi.org/10.1016/j.frl.2018.08.015
Clark, P. K. (1973). A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. [Veges varianciaju alarendelt sztochasztikus folyamatmodell a spekulativ arakert.] Econometrica: Journal of the Econometric Society, 41(1), pp. 135–155, https://doi.org/10.2307/1913889
Conlon, T., McGee, R. (2020). Safe Haven or Risky Hazard? Bitcoin During the COVID–19 Bear Market. [Biztonsag vagy kockazat? Bitcoin a COVID–19 alatti medvepiacon.] Finance Research Letters, 35, 101607, https://doi.org/10.1016/j.frl.2020.101607
Conlon, T., Corbet, S., McGee, R. J. (2020). Are Cryptocurrencies a Safe Haven for Equity Markets? An International Perspective from the COVID-19 Pandemic. [Biztonsagosak-e a kriptovalutak a reszvenypiacok szamara? A COVID– 19-jarvany nemzetkozi szemszogből.] Research in International Business and Finance, 54, 101248, https://doi.org/10.1016/j.ribaf.2020.101248
Copeland, T. E. (1976). AM odel of Asset Trading under the Assumption of Sequential Information Arrival. [Az eszkozkereskedelem modellje a szekvencialis informacioerkezes feltetelezeset alapul veve.] The Journal of Finance, 31(4), pp. 1149–1168, https://doi.org/10.2307/2326280
Corbet, S., Hou, Y. G., Hu, Y., Larkin, C., Oxley, L. (2020). Any Port in a Storm: Cryptocurrency Safe-Havens During the COVID-19 Pandemic. [A szukseg torvenyt bont: biztonsagos kriptovalutak a COVID–19-jarvany idejen.] Economics Letters, 194, 109377, https://doi.org/10.1016/j.econlet.2020.109377
Darrat, A. F., Rahman, S., Zhong, M. (2003). Intraday Trading Volume and Return Volatility of the DJIA Stocks: A note. [A DJIAreszvenyek napon beluli kereskedesi volumene es hozamvolatilitasa: jegyzet.] Journal of Banking & Finance, 27(10), pp. 2035–2043, https://doi.org/10.1016/S0378-4266(02)00321-7
Dickey, D. A., Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. [Az autoregressziv idősorok becslőfuggvenyeinek eloszlasa egyseggyokkel.] Journal of the American Statistical Association, 74(366a), pp. 427–431, https://doi.org/10.1080/01621459.1979.10482531
Dickey, D. A., Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. [Valoszinűsegiarany-statisztika egyseggyokos autoregressziv idősorokhoz.] Econometrica: Journal of the Econometric Society, 49(4), pp. 1057–1072, https://doi.org/10.2307/1912517
Epps, T. W., Epps, M. L. (1976). The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixtureof- Distributions Hypothesis. [Az ertekpapirok arfolyamanak valtozasai, es a tranzakciovolumenek sztochasztikus fuggese: kovetkezmenyek az eloszlasi hipotezis keverekere nezve.] Econometrica: Journal of the Econometric Society, 44(2), pp. 305–321, https://doi.org/10.2307/1912726
Garman, M. B., Klass, M. J. (1980). On the Estimation of Security Price Volatilities from Historical Data. [Az ertekpapirok arfolyamvolatilitasanak becsleseről korabbi adatokbol.] Journal of Business, 53(1), pp. 67–78
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross- Spectral Methods. [Az oksagi kapcsolatok vizsgalata okonometriai modellekkel es keresztspektralis modszerekkel.] Econometrica: Journal of the Econometric Society, 37(3), pp. 424–438, https://doi.org/10.2307/1912791
Harris, L. (1986). Cross-Security Test of the Mixture of Distribution Hypothesis. [Az eloszlasi hipotezis keverekenek keresztbiztonsagi vizsgalata.] Journal of Financial and Quantitative Analysis, 21(1), pp. 39–46, https://doi.org/10.2307/2330989
Hong, H., Bian, Z., Lee, C. C. (2021). COVID-19 and Instability of Stock Market Performance: Evidence From the US. [A COVID–19 es a tőzsdei teljesitmeny instabilitasa: bizonyitekok az USA-bol.] Financial Innovation, 7(1), pp. 1–18, https://doi.org/10.1186/s40854-021-00229-1
Jana, R. K., Das, D. (2020). Did Bitcoin Act as an Antidote to the Chinese Equity Market and Booster to Altcoins During the Novel Coronavirus Outbreak? [A bitcoin volt-e a kinai reszvenypiac ellenszere es az altcoinok erősitője az uj tipusu koronavirus-jarvany idejen?]. Elerhető: SSRN 3544794, http://dx.doi.org/10.2139/ssrn.3544794
Iqbal, N., Fareed, Z., Wan, G., Shahzad, F. (2021). Asymmetric Nexus Between COVID-19 Outbreak in the World and Cryptocurrency Market. [Aszimmetrikus kapcsolat a COVID–19-jarvany es a kriptovaluta-piac kozott.] International Review of Financial Analysis, 73, 101613, https://doi.org/10.1016/j.irfa.2020.101613
Jennings, R. H., Starks, L. T., Fellingham, J. C. (1981). An Equilibrium Model of Asset Trading with Sequential Information Arrival. [Az eszkozkereskedelem egyensulyi modellje szekvencialis informacioerkezessel.] The Journal of Finance, 36(1), pp. 143–161, https://doi.org/10.1111/j.1540-6261.1981.tb03540.x
Kristoufek, L. (2020). Grandpa, Grandpa, Tell me the one About Bitcoin Being a Safe Haven: Evidence from the COVID-19 Pandemics. [Nagypapa, meselj a biztonsagos bitcoinrol: bizonyitekok a COVID–19-jarvanybol.] arXiv preprint arXiv:2004.00047
Lahmiri, S., Bekiros, S. (2020). The Impact of COVID-19 Pandemic Upon Stability and Sequential Irregularity of Equity and Cryptocurrency Markets. [A COVID–19-jarvany hatasa a reszveny- es kriptovaluta-piacok stabilitasara es szekvencialis szabalytalansagara.] Chaos, Solitons & Fractals, 138, 109936, https://doi.org/10.1016/j.chaos.2020.109936
Luther, W. J., White, L. H. (2014). Can Bitcoin Become a Major Currency? [Valhat-e a bitcoinbol fő penznem?] GMU Working Paper in Economics, No. 14–17, Elerhető: SSRN: http://dx.doi.org/10.2139/ssrn.2446604
Petnehazi, G., Gall, J. (2019). Exploring the Predictability of Range-Based Volatility Estimators Using Recurrent Neural Networks. [A tartomanyalapu volatilitasi becslőfuggvenyek kiszamithatosaganak feltarasa ismetlődő neuralis halozatok hasznalataval.] Intelligent Systems in Accounting, Finance and Management, 26(3), pp. 109–116, https://doi.org/10.1002/isaf.1455
Rogers, L. C. G., Satchell, S. E. (1991). Estimating Variance from High, Low and Closing Prices. [A variancia becslese a magas, alacsony es zaro arfolyamok alapjan.] The Annals of Applied Probability, 1(4), pp. 504–512, https://doi.org/10.1214/aoap/1177005835
Samut, S., Yamak R. (2018). Price-Volume Relationship in Cryptocurrencies: Rolling Window Causality Tes. [A kriptovalutak ar-volumen kapcsolata: gordulő ablak oksagi vizsgalat.] (torokul: Kripto Paralarda Fiyat-Hacim İlişkisi: Rolling Window Nedensellik Testi), in B. Polat, M. Guler, H. Derin (Ed.). Studies on Social Sciences, Iksad Publishing, pp. 133–151
Smirlock, M., Starks, L. (1988). An Empirical Analysis of the Stock Price-Volume Relationship. [A reszvenyek arfolyama es volumene kozotti kapcsolat empirikus elemzese.] Journal of Banking & Finance, 12(1), pp. 31–41, https://doi.org/10.1016/0378-4266(88)90048-9
Toda, H. Y., Yamamoto, T. (1995). Statistical Inference in Vector Autoregressions with Possibly Integrated Processes. [Statisztikai kovetkeztetes vektoros autoregressziokban lehetseges integralt folyamatokkal.] Journal of Econometrics, 66(1–2), pp. 225–250, https://doi.org/10.1016/0304-4076(94)01616-8
Wang, P., Zhang, W., Li, X., Shen, D. (2019). Trading Volume and Return Volatility of Bitcoin Market: Evidence for the Sequential Information Arrival Hypothesis. [A bitcoin-piac kereskedesi volumene es hozamvolatilitasa: bizonyitek a szekvencialis informacioerkezesi hipotezisre.] Journal of Economic Interaction and Coordination, 14(2), pp. 377–418, https://doi.org/10.1007/s11403-019-00250-9
Yamak, N., Yamak, R., Samut, S. (2019). Causal Relationship Between Bitcoin Price Volatility and Trading Volume: Rolling Window Approach. [Oksagi kapcsolat a bitcoin arfolyam-volatilitasa es kereskedesi volumene kozott: gordulő ablak megkozelites.] Financial Studies, 23(3), pp. 6–20
CoinMarketCap (2021). Today’s Cryptocurrency Prices by Market Cap. [A mai kriptovalutaarfolyamok felső piaci hatar szerint.] https://coinmarketcap.com, e.t.: 2021.05.14.
Crypto List (2021). https://cryptoli.st, e.t.: 2021.05.14.
Europai Kozponti Bank (2015). Virtual Currency Schemes – a Further Analysis. [Virtualis penznem rendszerek – tovabbi elemzes.] ISBN 978-92-899-1560-1
Europai Kozponti Bank (2019). Crypto-Assets: Implications for Financial Stability, Monetary Policy, and Payments and Market Infrastructures. [Kriptoeszkozok: kovetkezmenyek a penzugyi stabilitas, a monetaris politika, valamint a kifizetesek es a piaci infrastrukturak vonatkozasaban.] ECB Occasional Paper No. 223, ISBN 978-92-899-3688-0, Elerhető: SSRN: https://ssrn.com/abstract=3391055
Downloads
Published
How to Cite
Issue
Section
License
Authors assign copyright to Pénzügyi Szemle / Public Finance Quarterly. Authors are responsible for permission to reproduce copyright material from other sources.