Renewable Energy Production and Storage Options and their Economic Impacts in Hungary

Authors

  • Márton Németh Budapest University of Technology and Economics

DOI:

https://doi.org/10.35551/PFQ_2022_3_2

Keywords:

renewable energy production, energy storage, cost analysis, Q21, Q42

Abstract

The study reviews the most relevant renewable energy sources, focusing on their possible application, economic aspects and potential for Hungary. Feasibility and economic analysis is made for plant-sized photovoltaic devices, wind turbines, geothermal power plants and biomass power plants. It was found that solar cell technology has the highest revenue. However, its further spread is limited by several factors, such as the reactive effect on the energy market, grid problems, and weather dependency. A possible solution for these problems is to use energy storage systems. For the sake of simplicity, only the economically mature technologies are investigated, including pumped hydroelectric storage, batteries, green hydrogen production, and thermal energy storage connected to a heat power plant. The payback calculations require a simple simulation algorithm to calculate the revenue using Hungarian data. With the simulation, the most important economic indicators are estimated. As a result of these calculations, we suggest a pumped hydroelectric storage to be built, or if it is impossible, the Paks 2 nuclear plant should be completed with a thermal energy storage facility.

References

Altun, A. F., Kilic, M. (2020). Thermodynamic performance evaluation of a geothermal ORC power plant. Renewable Energy, 148, pp. 261–274, https://doi.org/10.1016/j.renene.2019.12.034

Amrane, F., Francois, B., Chaiba, A. (2021). Experimental investigation of efficient and simple wind-turbine based on DFIG-direct power control using LCL-filter for stand-alone mode. ISA transactions, pp. 1245–1256, https://doi.org/10.1016/j.renene.2021.02.03

Aszódi, A., et al. (2021). Comparative analysis of national energy strategies of 19 European countries in light of the green deal’s objectives. Energy Conversion and Management: X, 12, pp. 100–136, https://doi.org/10.1016/j.ecmx.2021.100136

Budisulistyo, D., Wong, S., Krumdieck, S. (2017). Lifetime design strategy for binary geothermal plants considering degradation of geothermal resource productivity. Energy Conversion and Management, pp. 1–13, https://doi.org/10.1016/j.enconman.2016.10.027

Dinya, L. (2010). Biomassza-alapú energiatermelés és fenntartható energiagazdálkodás. Magyar Tudomány, 918. oldal

Holweger, J. C. (2022). Distributed flexibility as a cost-effective alternative to grid reinforcement. 22nd Power Systems Computation Conference. Porto, Portugal: arXiv

He, G., Michalek, J., Kar, S., Chen, Q., Zhang, D., Whitacre, J. (2021). Utility-Scale Portable Energy Storage Systems. Joule, pp. 379–392, https://doi.org/10.1016/j.joule.2020.12.005

Gordon, J., Fasquelle, T., Nadal, E., Vossier, A. (2021). Providing large-scale electricity demand with photovoltaics and molten-salt storage. Renewable and Sustainable Energy Reviews, 110261, https://doi.org/10.1016/j.rser.2020.110261

Koohi-Fayegh, S., Rosen, M. A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 101047, https://doi.org/10.1016/j.est.2019.101047

Kusakana, K. (2018). Optimal operation scheduling of grid-connected PV with ground pumped hydro storage system for cost reduction in small farming activities. Journal of Energy Storage, 16, pp. 133–138, https://doi.org/10.1016/j.est.2018.01.007

Madlener, R., Specht, J. M. (2020). An Exploratory Economic Analysis of Underground Pumped-Storage Hydro Power Plants in Abandoned Deep Coal Mines. Energies, https://doi.org/10.3390/en13215634

Menéndez, J., Fernandez-Oro, J. M, Loredo, J. (2020). Economic Feasibility of Underground Pumped Storage Hydropower Plants Providing Ancillary Services. Applied Sciences, https://doi.org/10.3390/app10113947

Roth, A. et al. (2021). Renewable energy financing conditions in Europe: survey and impact analysis. Project: AURES II – Auctions for Renewable Energy Support, https://doi.org/10.13140/RG.2.2.35212.03208

Rusen, S. E. (2020). Quality control of diffuse solar radiation component with satellite-based estimation methods. Renewable Energy 145, pp. 1772–1779

Skoczek, A. T. (2009). The results of performance measurements of field‐aged crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and applications 17.4 , pp. 227–240

Soltani, S., Yari, M., Mahmoudi, S. M. S., Morosuk, T., Rosen, M. A. (2013). Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit. Energy, pp. 775–780, https://doi.org/10.1016/j.energy.2013.07.038

Sospiro, P., Nibbi, L., Liscio, M. C., Lucia, M. (2021). Cost and Benefit Analysis of Pumped Hydroelectricity Storage Investment in China. Energies, 14, pp. 1–20, https://doi.org/10.3390/en14248322

Steckel, T., Kendal A., Ambrose, H. (2021). Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems. Applied Energy, 117309 https://doi.org/10.1016/j.apenergy.2021.117309

Stocks, M., Stocks, R., Lu, B., Cheng, C., Blakers, A. (2021). Globalatlasofclosed-looppumped hydro energy storage. Joule, 5, pp. 270–284, https://doi.org/10.1016/j.joule.2020.11.015

Subir, K. (2016). ESMAP: Energy Sector Management Assistance Program: Comparative Analysis of Approaches to Geothermal Resource Risk Mitigation. Forrás: Wordbank.org

Sui, X., Świerczyński, M., Teodorescu, R., Stroe, D. I. (2021). The Degradation Behavior of LiFePO4/C Batteries during Long-Term Calendar Aging. Energies, pp. 1–16, https://doi.org/10.3390/en14061732

Wall, A. M. (2017). Geothermal costs of capital: Relating market valuation to project risk and technology. GRC Transactions,, a41.

Zhang, D. C. (2021). Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage System. Journal of Electrical Engineering & Technology, pp. 2497–2507, https://doi.org/10.1007/s42835-021-00808-3

Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., Melero, J. (2018). Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renewable and Sustainable Energy Reviews, 82, pp. 1261–1771, https://doi.org/10.1016/j.rser.2017.09.100

BME, Energetikai Szakkollégium. (2016). Mosonyi Emil emlékfélév. Forrás: https://www.bitesz.hu/wp-content/uploads/2016/11/szet_helyzete_magyarorszagon.pdf

EON. (2022. 01 2022.01.08). eon.hu. Forrás: https://www.eon.hu/content/dam/eon/eonhungary/documents/kiseromuvek-csatlakozasilehetoseg/EDE_eromu.pdf

EON. (2022. 01 2022.01.08). eon.hu. Forrás: https://www.eon.hu/content/dam/eon/eonhungary/documents/kiseromuvek-csatlakozasilehetoseg/EED_eromu.pdf

Európai Bizottság (2020). Eu törvénytár. Forrás: Eu törvénytár: https://eur-lex.europa.eu/resource.html?uri=ce,llar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0012.02/DOC_1&format=PDF

Európai Tanács (2018). EU törvénytár. Forrás: EU törvénytár: https://eur-lex.europa.eu/legalcontent/HU/TXT/PDF/?uri=CELEX:32018L2001&from=EN

HUPX. (2022). HUPX, hystorical data, 2021. Forrás: https://hupx.hu/en/market-data/dam/historical-data)

IRENA. (2021). Renewable power generation cost 2020. Abu Dhabi: International Renewable Energy Agency.

MAVIR. (2021). mavir.hu. Forrás: https://www.mavir.hu/documents/10258/240293410/BT_2015-20211231_ig_BR+NT_HU.pdf/fdae14d8-ffe6-e4fa-d98f-bf7a92f74e1a?t=1642080079547

MEKH. (2022). Magyar Energia és Közműszabályzási Hivatal, termelési adatok. Forrás: http://www.mekh.hu/download/8/0e/01000/4_2_brutto_villamos_energia_termeles_eves_2014_2020.xlsx

MVM PAKS II. ZRt. (2020). PAKS 2. környezeti hatástanulmány. Forrás: Paks2.hu: https://www.paks2.hu/documents/20124/60046/1-8.+fejezet+-+K%C3%B6rnyezeti+Hat%C3%A1stanulm%C3%A1ny.pdf/b319ea87-14ba-5e94-22bd-4bfbbc2a2728

PVGIS, E. S. (2022. 01 2022.01.05). Photovoltaic Geographical Information System. Forrás: Photovoltaic Geographical Information System: https://re.jrc.ec.europa.eu/pvg_tools/en

Sargent & Lundy, L. L. C. to U. S. Energy Information and Administration. (2019. December 2022.01.10). www.eia.gov. Forrás: https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf

UK Department of Business, E. a. (2021). Hydrogen Production Costs 2021. Forrás: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1011506/Hydrogen_Production_Costs_2021.pdf

U. S. Department of Energy. (2020. December 2022. 02. 08). pnnl.gov. Forrás: 2020 Grid Energy Storage Technology Cost and Performance Assessment: https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf

Published

2022-09-30

How to Cite

Németh, M. (2022). Renewable Energy Production and Storage Options and their Economic Impacts in Hungary. Public Finance Quarterly, 67(3). https://doi.org/10.35551/PFQ_2022_3_2

Issue

Section

Focus - Sustainability, Energy, Security of Supply